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ABSTRACT: This paper connects Wazewski's conditions with ~M-matrices which are
both involved when dealing with Lyapunov stability using overvaluing comparison
techniques. Then it provides methods for stabilization of a class of time-continuous

systems under constraints on both control and state vector. An illustrative example is
developed.
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1. INTRODUCTION

Basic results concerning differential inequalities were provided by Wazewski [25],
who gave hypotheses ensuring that the solution of a system described by;

7 =t x), with initial condition Xg at time £ and function f verifying the inequality
S, x) £ g(1, 1), is overvalued by the solution of the so-called “overvaluing system™:
a%: g(t, z), with initial condition 20 2 X at time fg, or in other words, conditions on

function g(t, ) that guaranty x(1) < z(1) if x(tg) < 2(tg).

These “Wazewski’s conditions” appear to be fundamental ones when using
comparison techniques [9].

On the other hand, the special class of matrices with non-positive off-diagonal
elements and positive principal minors, that are called M-matrices [7], and their opposite
that are called —~M-matrices, presents many applications to convergence studies, in
particular when dealing with vector-Lyapunov functions involving Vector Norms (V.N)
techniques [6, 8, 11], and for constrained control [5, 20, 21, 22],

By this way, the stability theory literature obviously suggests a tight connection
between Wazewski's conditions and ~M-matrices. However, this always appears in an
implicit maner and the present work aims at clarifying the existing implications.

A second part of the paper applies this to constrained control and positively invariant
sets: on the one hand, for linear systems with linear state feedback control, the problem of
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the stabilization under constraints on control and/or state is quasi-solved (see for example

[3, 5, 23, 24]). On the other hand, it remains an open question for general systems
described by:

%:f(r,x,d, c), c=Kx, (LSF) (1)

where:
t e IR is the time variable,
x € IR" is the state vector,

d € Sp, is the disturbance vector, that represents disturbances or unknown
modelling parameters,

Sp < IR’, the set of admitted disturbances,
x(t 5 tg, xg 3 d ; ¢) is the system motion (in short x(1)),
¢ e IR™ is the control vector, K € IR™*",

For system (LSF) (1), Radhy [20, 21, 22] contributes to this problem using V.N: a

linear state feedback control is computed using an optimization procedure and a linear
function g.

In this paper, we use non linear overvaluing function g, which appears to be less
conservative.

2. NOTATIONS

In the following, we also consider the system:
dx
T =St xd, w), (S) (2)

where: u € IR" is the control vector of a more general form than in (LSF) (1), and we

assume that the solutions x(#) of either (1) or (2) exist, are unique and continuous w.r.t.
time ¢, t € [fy, +oof.

o fora= [a], ey a;]TE]Rt,lM: [la’lk, ey IO:;{]T.
sg<b (aandbe IR"), elementwise inequality.

k
eletR=IR"T®@R"® ..® R", 3 ng=n,then P; denotes the projection operator

i=1
from IR” onto IR™: x; = P; x, x; = [Xits oo xin,-]T' x;€ RM.

® p(x) a regular Vector Norm (V.N) of size k with components p;(x;) scalar norms of the
xip p(X) = [P1(x1)s s Pk(xk]]T-

% D:P;'(x) = D:Pi(-’fi) = Lim p,'[Jr;(f+9)]—p,'[x,-(t)},
+
60 e
the right-hand time derivative (Dini derivative).
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. D;i pix) = D:‘_ pi(x;), the M vector element of the right-hand gradient.
+ = + T
Dxipf(xf) = [DIH P,-{x[-). ey Dx"njpi(xf):| "
pl-[x‘—fl,-l i+1 AI{}“pE[Iﬁ‘IL i AI{]
A):‘-
|&x;1—0
Axj=x,()=x,(r + 6),

+ ;
I),t:-jp!'(xl‘) = GL::S“"

I;j= Diag {(1-8})), ..., (1-8;), 0, ..., 0}, I ; & IR%*™, 5,j={f ::j .

o (S, IRY, the set of or-times continuously differentiable functions from Sinto IR¥,

o X, = (xe R":p(x)<w}, with w> 0, w e R¥ a bounded connected open
neighbourhoed of x = 0,

e (), (?), d (.) respectively denote the closure, the interior and the boundary of the set (.).
¢ p, the Euclidean distance.

3. OVERVALUING COMPARISON SYSTEMS

3.1. Definitions and Lemma

Let Sbe a subset of IR¥, Let ge C'(5 IRY and Ve COIR", ) be a function of the

variable x which may be a motion of (2) or (1). Let us suppose that the right hand time
derivative of V(x) satisfies the following inequality system:

DI V(x) < g(V(x)), V(x) € . (3)

Then we associate with (3), the following overvaluing system (0.8.) of (3) described
by:

gz s ™

Definition 1 (see [13, 18])

i) g1z g(z), is locally quasi-monotone non-decreasing w.r.t. § if and only if:

Vie {l,..,k}and (x,y) € §x §, such that: x; = y; and x; < y; (j # i), the inequality
8:(x) < g (5) holds. 5)

inifini) 5= ]Rk, then g(z) is quasi-monotone non-decreasing.

Remarks 1:

1) This definition also appears in a more general form where g includes the time

variable and other variables (say g(z, x, ¥)) and satisfys a similar form to (5) with respect
to one variable only (say x) (see [1, 2, 15]).
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2) The second point ii) of this definition is a special case of the more general definition
of “mixed quasimonotonicity” where some components of g are quasi-monotone non-
decreasing and the other are quasi-monotone non-increasing (see [13]).

3) Functions that satisfy the Wazewski's conditions received different names with
sometimes slight differences for the continuity:

- “increasing with regard to the diagonal elements” ([12]),

- *“uniformly non singular monotone” (see [9] p.117),

if in addition g is requested to be continuous:

- “property K or H” which are equivalent under certain hypotheses concerning the set
relative to the property (see [25]).

Lemma 1
Let us suppose that:

1) for a given function V e CO(]R”, $) there exists a function locally quasi-monotone
non-decreasing w.r.t. § g € cl(s, IRY satisfying (3),
2) U S, is a positively invariant set w.r.t. (4).

Then:

1) ¥ zg € U, z(t} g 2g) the solution of (4) passing through zg at #g is unique,
continuous w.r.t. time f and defined ¥ t € [tg, +2°[,

2)Vde Sp,Vzge U: 0= V(xg) < zp, the inequality:

0 < VIx(1)] S z(2 ; tg. zg), holds ¥ t € [tg, +eof,
NVde Sp, Vg Vixg)e U, Vix(nle U for t € [tg, +eof. |

Proof This is a classical result [25], except that it applies to a restricted set U (see
(18]).

Remark 2:

If g = O V(x)+0, where O has non-negative off diagonal elements, then g is quasi-
monotone non-decreasing and thus the conclusions of lemma 1 hold.

3.2, Use of Vector Norms
Consider a defined control law (¢, x) and let us rewrite system (S) (2) as:

%:A(r,x, B Bt dl (6)

Let us consider the k-sized regular Vector Norm (V.N.) p(x) and let us define, for any
i and j from the set {1, ..., k}:

xe R'andye R", x;=P;x,y;=P; y. (7)
bi(t,x,d) =.Pi b(t, x, d), te IR, x e IR”,de SD‘
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0 f(x) = SU%I[D:rpl(x!)]T bi(r? x, d)l»
e
de 8p
o(x) = [g ()", ®)
Agj(r‘ X, d} = Pl' A[r, x, f.f) PJ’
Dy, piy)™ A, x, d) y;

mU(f, X, ¥, d) = pj(};}) !
0,(x) = Sup oyl x, 3, d),
ye R"
de 3p
0(x) = [(x)]. ®

We assume that the above-defined terms are meaningful. For classical Holder-type norms,
the computation of (O(x), o(x)) is easy to implement (see [4, 6, 8, 18]). For example,
system (6) with V.N, p(x) = |x| = [leyl ... |x,,|]T, yields:

nn

O(x)= Su | | aj; 1 l (elementwise), (10)
dr': SD ] l I 1 '
o(x) =ISEu§1 [ | | by l | . []T(e]emcntwise). (1)
de SD
Lemma 2

The following inequality holds for system (6):
D:p{x) < O(x) p(x)+o(x), (12)
if O(x) and o(x) are respectively defined by (9), (8). |

Proof omitted for sake of brevity (see [18] p.147)

Remark 3:

There generaly exists a V.N. p (in particular p(x) = |x|) allowing to rewrite the right
part of (12) as a function of p(x): g(p(x)), or such that;

0(x) p(x) + 0(x) £ g(p(x)), p(x) € 5. (13)
Thus Lemma [ can be applied.

3.3. Connecting Wazewski’s conditions with opposite of M-matrices

Using Remark 3, we can compute O.S. via V.N.
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Let us suppose that:
1) the V.N. leads to inequality (3) with g € C](.S, [Rk),

2) system (4) admits an equilibrium point z,€ S, and § is a connected

neighbourhood of 2

agt' (2)

Let A(z) ={ } be the Jacobian Matrix of g at z, and A =A(z).

7.
J
If we state the following assertions:

P1: g is locally quasi-monotone non-decreasing w.r.t. a neighbourhood (A of Z
PZ:A:aEJ.EO, J# i,

P2':A:%j>0,j¢ =

0g (2)
P2 ) >0 on %,
aZJ.'
P3: z, is hyperbolic (with no center eigenspace) and asymptotically stable,
P4: A is a ~M-matrix (i.e a; 20, V j#iand every eigenvalue of A has a strictly
negative real part),
then, the following lemma connects Wazewski's conditions with —M-matrices:

Lemma 3

Pl = P2,

P2'=Pl,

P2t ipy

[P1 and P3] = P4, [ |

Proof
Pl = P2:

First, without loss of generality put z, = 0 (because a change of coordinates shows
that the obtained right part of (4) satisfies P1 and the general asumptions, with z, = 0),
Now, if the implication is false then 3 (4, j) such that a;< 0. So, let € > O (arbitrarly small)
and e =g [(}ml...O]T (1 at the jth place), using condition P1 we show that ¥V j = i,
gi(e)20.g€ CI(S. IRk}, s0 using a Taylor expansion: 3 § > 0 such that ¥ & such that
§>e>0, sign(g; (e)) = éign(qj) =+1 (contradiction).

P2 =S P

Letie {1,..,k}, x and y two distinct points of 5, such that: x; = y; and x; < y;, with

J #i. Consider the following set: Sf}': #iix< y;}, this set is not empty, thus:
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Z a j-x)= X ag (¥j— %) > 0. So, there exists a neighbourhood A= Sof z,,
e je 5.

i
such that: sign(gf. (y) — g (x) = sign(}; a; (yj - j)) = +1, Thus g is locally (A} quasi-

monotone non-decreasing.

hotae e o
Letie (1, .., k}, xand y two distinct points of , such that: x; = y; and x; £ y;, with
J # i. Consider the following function: ¢: [0, 1] — S — R

A=z D) =x+ A (y—x) = §(A) = g;(z(A)).
1

Function ¢ is also C', thus on one hand I = 6[ #'(A) dA = (1) — ¢(0) = g;(») — gi(x)
1

|
dg,(2)
and on the other 1= [ ¢*(A) dA= | ¥, —==| ) 0~ x) dA, which is positive.
0 j# i aZJI
0
[P1 and P3] = P4: it comes directly from Pl = P2.

4. APPLICATION TO CONSTRAINED CONTROL
4.1. Problem formulation

Consider system (LSF) (1) that has to reach a final target set A, subjected to
constraints on both state and control related to two V.N. p|(x) and py(c) (see [20, 23]):

1) x is constrained to belong to Sgc:
Ssc=(xe IR": py(x) € sc), (14)
2) c is constrained to belong to See
Sce = {ce R py(c) < cc). (15)
In practice, most of the time, the two V.N. p|(x) and py(c) are respectively:
p1(x) = |x| and p3(c) = |c].
Here, the particular choice of the control (linear state-feedback) implies the
reformulation of (15) as a constraint on the gain matrix K:
Skc= (K e R py(K x) S cc withx e Sgel,

or, as a constraint on the state vector x:

Sge(K) = {xe R": pyp(K x) < cc). (16)
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Thus the problem can be formulated as follow:

Problem: #((LSF) (1), 4, Sgc, Ssc(K))

For the given sets A, Sg¢ and Sge(X), find a gain matrix K such that:
VYde 8p,Vige R, Vxge (Sgc M SgelK)), the two following properties hold:

PO x(titg.xg:d; K)e (Sgc M Sge(K)), for every t e [tg, +oof,

P2) Lim p(A;x(t;19.x9;d; K)=0.

t—toe

When 2 can't be solved exactly, it is reasonable to change the sets 4 and
(SSC m Ssc(K)).

4.2. Theorems

As previously seen the two constraints can be reduced to only one (Sgec N Sge(K)).
Let us suppose that: (Sgc M Sge(K)) = Sgc, thus we do not use the V.N p,(x), and
choose p(x) = p(x) for applying results of part 3, with p(x) = V(x) = p;(x). This leads to:

D} p(x) € g(p(x)),

where g is defined by (13). In this part, we use the notation "gK" to recall that the
obtained function g depends on the gain matrix K,

At this level, in order to solve our problem, it is of importance to obtain results giving

sufficient conditions (on K) which ensure the positive invariance of (Sgc M Sge(K))
with respect to {(LSF) (1), Sp} in the sense of the following definition:

Definition 2
A connected set Cis positively invariant w.r.t. {((LSF) (1), Sp) if and only if:

Vde SpVxge Cx(t)e Cforevery te [ty +oof, (17)

Lemma 4 (Invariance lemma)
Let us suppose that;

1) the V.N. leads (o inequality (3) with gK € Cl(.S, IRk) locally quasi-monotone non-
decreasing w.r.t. S,

2) system (4) admits a positive hyperbolic equilibrium point % which has a domain of
asymptotic stablility (see [10, 18]), Dys(z,) # & with {z e I'Rfr 1z ze} o Q)as(ze) c S,

N Xp=f{re R": p(x)<w,w>g :gK(w} < 0}.

Then:



Connecting Wazewski’s Conditions with M-Matrices 89

1} Such X, exist (ie Iw> Z 1 gK(w) < 0),

2) Every X,, with ({z € IRf ‘2 S w) © Dyelz) is positively invariant w.r.t.
{(LSF) (1), Sp},

3) Every finite intersection or union of such X,, with ({z € IRf 125w} C Dylz) is
positively invariant w.r.t. {(LSF) (1), Sp). |

Proof

1) First, without loss of generality put z, = 0. Let A be the Jacobian matrix of gK at

z, = 0, then lemma 3 shows that A is the opposite of an M-matrix. Thus 3 & > 0 such

that: A u < 0 [7]. Let & > O (arbitrarly small) and ¢ = € u, then using a Taylor expansion,
g¥e (s, IRY, 36> 0 such that:

Vé>e>»0, sign(gf"(w}) =~ (V i). This proves 1),
2)Letxe dX,, then ie (1,2,..,k} such that:
pi(x) € x) X1
p)=| px)=2; | withw=| g
Pr(x) S X Xk
Asxe X, and ((ze lRf_ tzSwle Dyiz) < 9):
Dy*pix) € X (x) < g¥(w) < 0 (using condition 1) of lemma 4). This prove 2).
3) It is obvious,
Remark 4:

This invariance property of X,, can be involved in order to obtain new kinds of
estimates of D,i(z).

Theorem 1
Let us suppose that there exists K such that:

1) the V.N. leads to (3) with gﬁ e cl(s, RY locally quasi-monotone non-decreasing
w.r.t. S,

2) (4) admits a positive equilibrium point z,, which is asymptotically stable, thus
Dsafz,) # © and is supposed to satisfy {z € IRf_ 1282} @ Du(z) e,

3) Ssc © Dylz,) and sc > z, such that gK(sc) <0,
4) (Ssc N Sge(K)) = Sse.
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Then with 4= {x e IR": p(x) £ z,}, the problem B(LSF) (1), A, Sgc, Ssc(K)) has
a solution K. |

Proof
Hypotheses 1) to 4) imply, using lemma 4, that (Sgc M SSC(R)) = Sgc is positively

invariant w.r.t, {(LSF) (1), Sp), thus Vd e Sp, V{5 € IR, V x5 € Sgc property P1) of
the problem Pis satisified.

Let us suppose that property P2) of the problem ®(LSF) (1), 4, Sgc. Sse(X)) is not
satisified. Thus there exist (d, fy, xg) € Sp X IR X Sgc and a neighbourhood A{A) of 4
such that the solution of (LSF)(1) x(2; tg, X0 3 d J{'} lies out of A{A) for every
t € [tg, +oo[. And thus, using Lemma 1, we can exhibit a solution of (4):

2(t; to, 29 = plxp); K) 2 plx(t; tg, xg 3 d 3 K)] lying out of a neighbourhood of 2

which is in contradiction with the attractivity hypothesis of z, (hypothesis 2).

Remarks 5:
1) Strong and precise results concern the study of non linear time invariant systems

such as system (4) (see [10, 11, 18]), then condition 2) of theorem 1 or lemma 4 can be
worked out in practice,

2) Conditions 2), 3) and 4) of theorem 1 or lemma 4 are geometric and easy to test,
whereas condition 1) can be tested using the property P2’ of lemma 3.

3) There exist techniques providing gK of the following particular form (see [4, 5,

210 gK =M z + g, where M is the opposite of an M-matrix and ¢ is a positive vector.
And thus, from theorem 1, one can obtain the following result:

Corollary 1

Let us suppose that there exists K such that:

1) the V.N. leads to (3) with gK =M z+ g, where M is a -M-matrix and g is a
positive vector,

2) Sgc < S (the domain of validity of (3)),

3) (SSC M SSC(R)) = Ssc.

Then with 4 = {x € IR": p(x) £ —=M~'q), the problem P((LSF) (1), 4, Ssc,
Ssc(K)) has a solution K, =

Proof
It comes directly from Theorem 1.

Remark 6:
This result was used implicitly in [5] and in [20, 21, 22].
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4.3, Methodology

The following algorithm permits, for a given system (LSF) (1) with given sets Sp,
Ssc» Sce, to find a gain matrix K which minimizes a set 4 and answers problem 7,

Step 1:

Choose an adequate V.N p(x) and use the results of section 3 (see also [4, 6, 8, 11])
to obtain Inequality System (3),

Step 2;
Using property P2"' of lemma 3, test the quasi-monotonicity of gK e cl(s R,

Step 3;
Check the positive equilibrium points % (these points are depending on the variable K)

of the Overvaluing System (4). Using Kotelianski criterion for local asymptotical stability
gives condition on K (see [4, 6, 8, 11]),

Moreover, we obtain other conditions on K ensuring that (Sgc M Sgc(K)) = Ssc
and that it is positively invariant.

Step 4.
Subject to these conditions, minimize the size of 4= {xe R" : p(x) < Z}
If not possible, try to find the greatest Sy positively invariant and included in

Ssc M Ssc(K) such that the procedure is possible. Verify if all conditions of Theorem 1
are fulfiled and conclude.

4.4. Example

Let us consider the disturbed system described by:

| k
%{”W 25”“];{ I‘]+d(r),re R, xe R", (18)
sint =2 0

with time continuous motions x(t ; f9, Xo), [di{)] < 6, and the following sets of constraints:

Sgc={xe m2:|x1;s1and|.5;s 1% (19)
Scc=f{e=kx :|d<10}. (20)
Step 1;

Let p(x) be the V.N. defined by:
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|x,1
plx) = o . 1)
x
2
This yields:
D:rp(x) < gK(p{x)), plx) € IR, with: (22)
I+k+z, 2 o
gK(z){ | p) ZJZ‘{ 5]. (23)
Step 2:

gK(z,) € Cl(le, 1R2) is quasi-monotone non-decreasing,

Step 3:

The study of system %i—: = gK(z) shows that there are two equilibrium points, There is

only one equilibrium point z, which belongs to Sge (19) if k < -2, and it is given by: !

s(k, & =\ 4 (24)2-4 (2-k) 5+62, |
]
2,,=2 G- 6= 5 {=6=2 (2+k)-s(k, 8)}, (24) '
2, =7 (62 2+0)-s(k, 9. (25)
Moreover this point is (globally) asymptotically stable if:

& +2k—s(k, 8) < 0. (26)

Step 4;
(Ssc N Sgc(K)) = Sy if:

Ikl < 10, 27 '_
and it is invariant if:

k+4+6 < 0, (28) y

-1+8<0, (29)

To minimize the surface of the final taget set 4 defined by the equilibrium point z,, we
have to minimize 3, which depends on & under the constraints (26)-(29). And the A
study of the function:
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1
hlk) = 3, 5, = 8 (2+K) {(8~2 @+k))-s(k, O}, (30)

shows that it is strictly increasing when — 10 k < — 4 (given by (27)-(29)). Thus the
final set A is minimized for k = -10, and conditions (26)-(28) are satisfied.

Finally, using Theorem 1, we conclude that the problem #((18), 4, Sge (19), Sec(K)
(20)) has a solution X = —10, with:

16-5-V (16+6)°-805 |

A={xe R":p(x) < 4 L0<d< 1, ’ 30

16+6-\ (16+6)°-808
4 i

If we suppose that § is very small, then neglecting second and higher terms we
obtain:

a={xe IR”:p(x)S5[;14—, %}T},0<5c<1. (32)

Using a linear O.S as in the paper of Radhy [20, 21], we obtain a final target set 4,
fourteen times bigger than 2

2 =(xe R*: p(x) < 5[4, 9Ty, (33)
t k=0
v
05l k=-10
5 & 05 0.5 15 2 25
05

-Figure 1: A solution to ®(18), 4, S5c (19), Sg(X) (20))-
The computation of the solutions has been obtained with di(t) =dy(0) = 10~2 cos(f).
Figure 1 shows that the open loop system (k = 0) diverges, whereas it converges

asymptotically and within the constaints, to the final taget A with £ =-10. Figure 1

compares the obtained final target 4 with &' obtained using the method proposed by Radhy
[20, 21].



94 Perruquetti and Richard

0.11 P a

0.075

0.05 k=-10
0.025¢ 4

A 3
b4 -0.02 & 0.02 0.4
-0.025¢ '

-0.05
-0.075¢
0.1

-Figure 2: Comparison with the method proposed in Radhy [20, 21]-

If there is no perturbation, 4= (O}, the system converges to the origin {O}. ‘
Moreover the size of the final target set is directly linked Lo the size of the perturbation. We !
can also notice that if the input is constrained to a value smaller than the one used in (20), |
one can have a similar reasonning.

5. CONCLUSION

The original contributions of this paper are:
- lemma 3 connecting Wazewski's conditions with opposite of M-matrices, thus i
numerous results concerning —M-matrices (for example see [1, 3, 8, 11]) can be extended
to more general 0.8, with quasi-monotone functions,
- lemma 4 giving a simple condition for set X, to be positively invariant, or with a
slight modification (see remark 4), conditions for a set to be an estimate of the domain of
asymptotic stability,
- theorem 1 giving sufficient conditions for the existence of a solution to the
generalized constrained control problem 2, and a method that provides this solution.
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