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ABSTRACT: In this paper, the problem of stability analysis of nonlinear time-delay
systems is considered by using comparison-like methods. The main tool is the concept of
vector norms which gives a systematic way of defining comparison systems. Examples
illustrate the study.
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1. INTRODUCTION

Comparison principle for functional differential equations [8], [12] coupled together
with the vector Lyapunov functions approach [7], [10] is an efficient way of analysing
stability of complex time-delay systems (see for instance [21, [13], or [14]).

In reference [2] the authors provided an approach based on vector norms and
comparison systems, by adapting previous results obtained in the non-delayed case ([1],
[6], [11]) to delay-systems. Following this method, this paper investigates delay-
independent stability properties of a general class of nonlinear, time-varying delay-
differential systems described by :

() = A(t, x(1), x(t — ())) x(8) + B(t, x(&), x(t — 7)) x(t — (1), M
where x & TR® is the instantaneous state vector, A(.) and B{.) represent n x n matrices, T is
a piecewise continuous function of the variable t satisfying 0 £ () < 1o,
and it is assumed that there is a unique solution x(t, to, ¢) of (1) for every tp € IR and for
every initial vector function ¢(t) defined and continuous on [tp— 7o, to].

This paper presents two main contributions:
- the first original point is to provide estimates of the attraction domain linked to an
asymptotically stable solution. This is obtained by using comparison systems which can be
valid only locally.
- the second one is to provide stability criteria that can be directly applied to nonlinear,

delayed systems. This allows us to enlarge the class of systems that can be analysed, as
will be shown in example 2, section 4.
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2. COMPUTATION OF COMPARISON SYSTEMS

‘We first recall the vector norm concept [11]:
Consider the following partition of IR® : IR? = E; ® E3 & ... & Ey, where @ denotes the
direct vector subspaces sum. Let P; be the projection operator from IR® onto E;, and x be a
vector of IR?, The projection of x onto E; will be denoted by x;, so x;=P; x =P; x;.
Let p; be a norm on the subspace E;, (i = 1, ... , k). Then the vector function.
p: R IR': , whose ith - component is defined by pi(x) = pi(xy), is a regular vector
norm (VN) of dimension k.

In the sequel, the following notations and conventions are used: D+p;(x;) represents the
right-hand derivative of pj(x;) with respect to time taken along the motions of (1). Zo
denotes the interval [ty , +oof. @ is a region of IR? containing a neighbourhood of the
origin. C = C([—70 , 0], IRM) is the set of continuous functions that map the interval
[T, 0} into IR, x, € C is defined by x((s) = x(t + §), —to £ s < 0. In the third section,
S(0) will denote the set {p e C:ple(s)) Sy, V se [-10, 0]} and Iy(o) the set
{x € IR?: p(x) < ct u}, where u is a given vector, and o a positive number. Any vector or
matrix inequality A < B is to be understood component-by-component, and
M(t, x(£), x(t~t(t))) will be abbreviated by M(.).

Definition 1 ; The matrices M, N : T x IR? x IR® — IRk*k define an overvaluing
system of (1) with respect to the VN p and the region D if the following inequality is
satisfied along every motion of (1):

Drp(x(1) < M(t, x(t), x(t = (1)) p(x(t)) + N(t, x(t), x{t - =) pix(t - (V). @

Yte T,V x € C{{—1,0}, D),

where M(.) = {};;(.)}, is such that its off-diagonal elements are non-negative, and
N(.) = {vj()} is a non-negative matrix.
If & = IR", the overvaluing system is said to be global.

This definition is an extension of the ones developped in the non-delayed case (see for
example [6], and [11]), and in [2] where the global case was the only considered. In the
sequel, the following assumption will be used:

Assumption 1: The pair of matrices (M, N) is such that system

Z () = M(t, x(8), x(t — T(t)) 2(t) + N(t, x(t), x(t — T(t}) 2(t — Tt}
admits a unique solution for any x;; € C([—1o, 0], D) and any z,€ C{{—o , 01, p(D)).
For instance, M(.) and N(.) may be locally Lipschitzian with respect to their second and
third arguments (see [4])

Tt is possible to give, for every system of form (1), the expressions of a particular
overvaluing system. Let :

y = x(t — (1),
Aji() =P AQ) By, 131ij(-)( =)¥i B(?)Pj
. _ grad pi(u}! Ay() vy
mlj(t' X, Y: u) - pj(uj) 1 1 ’ (3)
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_grad pi(upT By() vy
pi{v)

n;(t, X, y, u, v) =

Theorem 1 : The matrices M(t, x, y), N(t, x, y) given by :
Bt X, ¥) = sup {my(t x, y, w)}

ue IR®

viit, X, ¥)= sup {ny(t, %y, 4, v}, VijandVte T,V x,ye Rt (4)

u,ve R° ) .
define an overvaluing system of (1) with respect to the VN p. Systems given by (4) are
called natural overvaluing systems of (1).

Proof: Using (1), the Dini derivative of p; can be expressed by:
k X
D*pi(x) = Z, grad pi(x)T Ag() x; + Z grad pi(x)T By() v;.
i= j=

If x;# 0, we have :  grad pi(x)T Aj() x;= grad p;(,x(l})('l; Aul) %y pi(x;),
i\
and, by definition of py(t, x, y), it yields:  grad pi(x)T A5() %<1y pix)).
If x; = 0, the last inequality obviously holds. In the same way, it is possible to prove :
grad pi(xpT By() ;= vi;() pj(yj)- So, inequality (2) is proved.
Independence of vectors u; and y; and of vectors u; and v;in (3) ensures that off-diagonal
entries of M(.) and all the elements of N(.) are non-negative.

Corollary 1: Any matrices M(.) and N(.) such that ;
it %, ¥)) 2 pdt x, y),
Vit x, y)) 2 vyt x, ¥, 7
Yij=1,..,k and Vi, x,ye [oxIRFxIRP,
define an overvaluing system of (1).

The use of this corollary may provide simple forms of overvaluing systems, for example
M and N may be constant,

For usual norms, expressions of the natural overvaluing systemn are given in an explicit
form. Let a partition of the space IR® define a block partition of matrix A. I; and
represent the sets of indices of rows and columns, respectively, of block Ay.

With pi(x;) = I x; I, where I, Il is an arbitrary norm on E;, we obtain

Hii) = H(An), :
Hi() =W Az li, fori,j=1,.. kandisj {5)
Vij(-) =l Bij i, for i,] =1,..k

where [L(A;) is the matrix measure of Aj; associated with the norm I . Il (see [3]). These
formulas generalize the ones given in [2].
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We now propose an extension of Borne and Gentina’s comparison lemma ([6]) to the
nonlinear differential-difference equations, ;

Comparison lemma 1: Let (M(.), N(.)) define an overvaluing system of (1) with
respect to a regular VN p and a region D, and such that system

Z (1) = Mt, x(8), x(t — (1)) z() + N, x(t), x(t — 1V))) z(t — T(D)) 6y .
_ satisfies Assumption 1, :
Then (6) is & comparison system of (1) in the sense that if the inequality
z(t) 2 p(x(t)) {7)
‘holds for t € [tg—To . tol, then it holds as long as x(t) remains in D.

Proof : The proof of this lemma is a direct adaptation of Grujié et al. [6], and for sake of
brevity is not reproduced here. ¢

Corollary 2: Stability (or respectively attractivity, asymptotic stability) of the zero
solution of a comparison system (6) deduced from (1) implies stability (respectively
attractivity, asymptotic stability) of the zero solution of system (1).

3. STABILITY THEOREMS AND STABILITY DOMAINS ESTIMATION

A classical result obtained by Tokumaru et al. [12] is that if (6) is linear, time-invariant
(i.e. the matrices M(.) and N(.) are constant and verify conditions of definition 1) then it is
asymptotically stable independent of delay if and only if the sum-matrix M+N is the
opposite of an M-matrix (see Appendix). The following theorems 2 and 3 generalize this
result to two classes of nonlinear, delayed systems (they can also be regarded as
generalizations of Borne and Gentina’s results). Theorem 4 is an extension of Mori’s
results [9].

In this first result, we consider that the delay 1(t) is constant, i.e. T(t) = 15 for all tin T,

Theorem 2 : If for the system (1) there is an overvaluing system:
Z(t) = M(t, (1), x(t — 7)) z(t) + N(t, x(t), x{t ~ o)) z(t — To),
related to a regular VN p and a region 2, satisfying Assumption 1, such that:
(i) non-constant elements of Z;(t, x, y, w) = M(t, x, y} + N(t + Ty, w, x) are isolated in
one column, and
(ii) there is € > 0 such that, for all tin Bpand all x, y, win D,
Zy{t, x, y, w) + € I is the opposite of an irreducible M-matrix,

then the zero solution of (1) is stable (asymptotically stable if N() is bounded), and
stability (or asymptotic stability) is global if ©=IRn,

Proof : Let Apax = supfhn(Zi(t, x, . w)); (L, X, y, W) & Tox ) (where An(Z,) is the
importance eigenvalue of Z;, see Appendix}, 50 Amax < ~€, and let u be an eigenvector of
Z'f(t, X, ¥, w) associated with A,y for a given (t;, xq, ¥4, wy).
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Let Vo) =pTx@.u+ | pT(x(s)).NT(s+q, x(s+T0), x(s))u ds

-7y
be a tentative Lyapunov-Krasovskii functional, then from (2) we obtain:
D*V(x) S pT(x(t)) [M(t, x(t), x(t — ) + N{t + o, x(t + 7o), x(NIT v
Then, conditions (i), (ii), and lemma 2 (in Appendix)} yield:
- IMCE x(1), x(t—To)) + Nt + To, x(t + o), xO)Tu L A u S -€ 0,
‘50 D+*V(xp S —&pT(x{()).u
According to Krasovskii’s theorem, the solution x = 0 of (1) is stable, or asymptotically
stable if N(.) is bounded.

Theorem 3 : If for the system {1), it is possible to define an overvaluing system
Z(t) = M(t, x(t), x(t — (D)) 2() + N{t, (1), x(t — (D)) z(t — (1)),

related to a regular VN p and a region D, satisfying Assumption 1, such that:

(i’) non-constant elements of Zy(t, X, ¥) = M(t, x, y) + N(t, x, y) are isolated in one row,

(ii") there is £ > 0 such that, forall tin Tpand allx, yin D,

Za(t, %, ¥} + &£ Iy is the opposite of an ireducible M-matrix,

then the solution x =0 of (1) is stable (asymptotically stable if N(.} is bounded) and the

set 8y (o), where u; = ug(7D) is an importance eigenvector related to Amax = max{Am(Za(t,

X, ¥):te B, X, ye D}, and ¢ is any positive real such that the set I (o} is included in

D, is a positively invariant set with respect to (1),

Proof : Let v(x) = Max (PJ(—XL)-, s Pklfﬂl
ok

For any time t in 9, there is an indexie {1 ., k} such that:
' DHv(x(t) = D"P-(X(l)),

1 k .

so  Drv(x()s o 1) pilxi(t)) + E, Wij () pilxi(t)) + :.lvij () pi(x;t — TON]
. jei j=
then, from the definition of v(x), we deduce
DHv{x() S é—-l {M() e v(x(8)) + N(.} ue v{x(t — (D]
Following Razumikhin's method, we only consider the solutions satisfying
vix(t) £ v(x(t —1(t).

Then, DHv(x(t) S Amax V(x({1) < 0.
Thus, v(x) is a Lyapunov-Razumikhin function, and hence, solution x = 0 is stable.
If N(.) is bounded, the solutions satisfying v(x(t)) £ (1+ &) v(x(t — t(t)) for all t in T,
where o is a sufficiently small positive number, verify Dv{x(t)) <0, s0 accordmg to [7]
or [10], the solution x = 0 is asymptotically stable.
At last, the sets {x € IR" : v(x) < .} contained in D are positively invariant (see [7])-

Remark : When the matrices M(.) and N{.) of the overvaluing systems are constant,
theorems 2 and 3 hold simultaneously : we encounter the classic condition given in
Tokumaru et al. [12], but, in the case of a local comparison system (9 # IR®), theorem 3
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and the following corollary give the definition of positively invariant sets which estimate
the stability domain of the null solution.

Corollary 3: If for the system (1), it is possible to define for all (t, x, y) in Tox DxDa
linear, time-invariant overvaluing system z(t) = M z(t) + N z(t — 1(t)) (M, N constant
‘matrices) related to a VN p with the additional property that M+N is the opposite of an
irreducible M-matrix, then

i) the solution x = 0 of (1) is asymptotically stable (Tokumaru et al.’s criterion [12]), and
it) an estimate of the attraction domain is given by the maximal set 3 4(cx) for which o is
such that I(or) is included in © and d is any vector such that (M+N)d < 0.

Moreover, if 0 =IR", then the system (1) is globally asymptotically stable.

The use of one-dimensional vector norms permits the formulation of a theorem that
extends Mori's results [9] to the nonlinear case.

Theorem 4 : If there are two functions a(t}, b(t) such that :

(i) de>0,Vte Ty a(t) s —¢,

(ii) Vte T, a(t) +b{t) <0 and

i) Vte %, V x,ye IR, pn(A(t, x, y)) < a(t) and IIB(t, x, y)Il < b(1),

(iv) The system z (£) = a(t} z(t) + b(t) z(t — T(t)) satisfies Assumption 1.
where Il . Il denotes an induced matrix norm, and [(.} is the corresponding matrix measure
(see [3]), then the zero solution of (1) is asymptotically stable.

Proof : Consider p(x) = lixll then :

Dp{x(t)) = h 1 Thx(t -+ hjlf — Ix (I
=, 1 0+h L fllx(t) + h(ACR(E)} + BC)x(t ~ TN = x()Ii]
So: Drp(x(t)) £ " li)rg,fh'l T+ h ACH =17 N (O + HBCI (e — Tl

By definition of P(A()), we have
Dp(x(1)) S W(A()) p(x(1) + IIBOI p{x(t — (D))

Thus, z () = a(t) z(t) + b()) z(t — (1)

is a comparison system deduced from (1). Then, using Razumikhin’s method [10], with
the Lyapunov function V(z) = 72, it is easy to show that, under conditions (i) and (ii), the
solution x = 0 of (1) is asymptotically stable. 9

4. EXAMPLES

Example 1: Let us consider the system described by the relation:

-3 i 0 o
5(({)=|: Frosiny ]"“’*[omxl]"(‘"”- ®)

2cost -4+ vy,
where y(t) = x(t-2) = [y, y2]T.
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Let p be defined as: p) =[x hIxr ‘ ©
therefore:

-3 +x sin - 1
M(l,x,y)=[ 1 Isin yal ]S 3 +x |
: 2lcost] —4 +yy 2 -4+y1 |

| U F0 0 1._100 |
““dN(""-’Y)"[o !siﬁxll]s[o 1]=N'

On the domain 2(g) = (—e2, 3 — Y2 ~ ] X IR, with £ > 0, M(t, x, y) is overvalued by:

-2 - 1
M) = V2-e ‘ . (10)
2 -1-+2-~¢
-¥2-¢& 1 , . . .
M(E)+N = is the opposite of an M-matrix, so system (8) is
2 -y¥2-e| -

locally asymptotically stable and admits the following positively invariant sets
3(e) = (9 e C: V(@(s)) < [file) . [(e)]T, V s € [-2, 0]},

with () =3—-vV2-g,and f(e)=3v2-2+(3-2V2)e—-¢2

It yields S={pe C: V(N <32, 32-2IT, V5 e [-2, 0]}

is an estimate of the domain of attraction of (8).

4

Fig 1; Simulation of syst. (8) for different initial functions
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Example 2 : In order to illustrate the efficiency of Theorems 2 and 3, let us consider the
system described by:

] -2 2cos?t 0 0
x(t)=[ cos :|x(t)+[0asinzt]x(t—l). (1)

1+ x; -2-sin?t

Let us first show that the resulis of references [12], [13], [14], or our corollary 3, that
involve constant comparison systems, are inapplicable in this case.

The finest constant comparison system associated with the vector norm p(x) = [Ix,|, IxalI*
on any region D= {x € IR? : Ix;| < o} {where & is any positive number) is given by:

. -2 2 00
z(t)=[ 1+ o _1]Z(t)+|:0 Ial]z(t—l), (12)

and M+N is not the opposite of an M-matrix, which is needed in previous references.

However, we can apply Theorems 2 and 3 by considering the following non-constant
comparison system:

. -2 2 0 0
2 () =|: 1 +¢a -2-sin?t ]z(t) * [ 0 lalsin?t ] 2t ). (13)

There is a positive number € (sufficiently small) such that

-2+¢€ 2
1+0 -2+¢+ (lal-1)sin?t
is the opposite of an M-matrix for any t if and only if lal + & < 2. So, according to

Theorem 2, the solution x = 0 of (11) is asymptotically stable. We now apply Theorem 3
to obtain an estimate of its stability domain. On D= {x e IR2: Ix{! £ 2 - lal — £}, we have

-2 2 } -2 2
< =Z1(g),
11+ x40 —2 + (lal = 1) sin?t F-lal—g —3+1lal

and this upper bound is reached forx; =2 —lal— €, and t = 0.

T
- — lah2 - 12
u (D) -—-[1, 1+ lal+ [(5 3 lal)” — 8e) ] is an importance eigenvector of Z2(g),

and A = 2 - lal — £ is the biggest positive number such that the set I, (A) belongs to .
Considering & infinitely small, we show that the set J defined by:

S ={pe C:ples) <2-1a, 2~ &l]T, Vs € [-1, 0]}

is a positively invariant set that estimates the domain of stability of solution x = 0 of (11).
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5. CONCLUSIONS

This paper has presented several original criteria to test the delay-independent stability
of nonlinear, time-varying systems with delays. These results extend Borne and Gentina's
work [1] to the delay case. An example shows that these criteria have less restrictive
hypotheses than previous ones ([2], [12], [13], [14]). Moreover, they give (Theorem 3
and Corollary 3 in particular) estimates of the stability domain, which also represents an
original contribution. Checking the algebraic conditions is rather easy, since they involve
properties classically used for linear systems even if the comparison system is nonlinear.
The analysis of the stability of nonlinear large-scale systems with delays does not pose
more difficult problems since vector norm method is an aggregation technique (see [6]). In
addition, following [13], Wang’s method for robust stability can be extended to the two
classes of nonlinear, time-delay systems defined in Theorems 2 and 3.

APPENDIX

Definition and properties of (-M)-matrices :

M is the opposite of an M-matrix if it is a Hurwitz matrix with non-negative off-diagonal
elements. If M is the opposite of an M-matrix then ([5]):

iy M'! is a non-positive matrix.

it} M admits an eig_envector u called the impartance vector of M, whose components are
non-negative, and which is related to the real, maximal and negative eigenvalue An(M). If
in addition A is irreducible then the components of u are strictly positive.

iii) for any vector x 2 0, x # 0, there is an index i such that x;y; < 0 (with y = Mx).

A matrix M with positive off-diagonal elements is the opposite of an M-mairix if and only
if the Kotelyansky conditions are satisfied, i.e. its successive principal minors are sign-
alternate:

“oim[yilosoivisna k.

Lemma 2 : Let M(t, x, y) be the opposite of an M-matrix with all non-constant elements
located on a same row. Let Agax = Sup[An{M(t, X, ¥)) ; (L, X, ¥) € Tox Dx D}, and letu
be an eigenvector of M(t, x, y) associated with Amey.
Then, the inequality :

Mt x, Y uina (14)
holds for any (%, x, y) in Topx Dx D,

Proof : We suppose that all non-constant elements of M(.) are isolated in the last row.
There are two possible cases : either (t, x, y) is such that u is an eigenvector of M(t, X, y)
associated with Amax, and then inequality (14) is obvious, or (t, x, y} is such that
(M(t, X, ¥) — Amax L) is the opposite of an M-matrix. But the first k-1 components of
vector (M(t, X, ¥} — Amax Ix).u are zero (due to the special form of M(.) and to the
definition of u), so applying property iii), it yields the fact that its ki component is strictly
negative, and then inequality (14) holds again.
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