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Continuous LTI sampled-data system Dynamic control of the sampling instants for sampled-data systems 

Method & Results   

Numerical example 

Goals : 

–  Sample as few times as possible 

–  Design offline the sampling map 𝜏𝑚𝑎𝑥 allowing maximal sampling intervals 

–  Maximize the lower bound of the sampling map 

–  Ensure exponential stability for a given decay rate 𝛽 

Sampling law 

 

SYSTEM 

CONTROLLER A/N 

𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐸𝑤(𝑡), ∀𝑡 ∈ ℝ+ 

𝑢 𝑡 = −𝐾𝑥 𝑠𝑘 , ∀𝑡 ∈  𝑠𝑘 ,𝑠𝑘+1) 

𝑠𝑘+1 − 𝑠𝑘 = 𝜏 𝑠𝑘 , 𝑥 𝑠𝑘 ≡ 𝜏𝑘 ∈ 0, 𝜏𝑚𝑎𝑥 𝑥 𝑠𝑘 , ∀𝑘 ∈ ℕ 
N/A 

𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 + 𝐸𝑤(𝑡) 

𝑥 𝑡  
𝑢 𝑡  

𝑥 𝑠𝑘  𝑢 𝑠𝑘 = −𝐾𝑥 𝑠𝑘  

𝑠𝑘+1 − 𝑠𝑘 ∈ 0, 𝜏𝑚𝑎𝑥 𝑥 𝑠𝑘  

State dependent sampling map 𝝉𝒎𝒂𝒙: ℝ
𝒏 ⟶ ℝ+  

Sampling control loop 

Abstract 

This work aims at decreasing the number of sampling instants in state feedback control for perturbed linear time invariant systems. The approach is based on linear matrix 

inequalities obtained thanks to Lyapunov-Razumikhin stability conditions and convexification arguments that guarantee the exponential stability for a chosen decay-rate. 

First, the method enables to perform a robust stability analysis regarding time-varying sampling and to maximize a lower-bound estimate of the maximal allowable sampling 

interval, by computing the adequate Lyapunov-Razumikhin function. Then, it makes it possible to design a state-dependent sampling control scheme that enlarges even 

further the maximal allowable sampling intervals. 

Lyapunov-Razumikhin 𝜷-stability condition: 

 If there exists a candidate Lyapunov function 𝑉 𝑥 = 𝑥𝑇𝑃𝑥 such that 

∀𝑥 ∈ ℝ𝑛, ∀𝜎 ∈ 0, 𝜏𝑚𝑎𝑥 𝑥 , 

𝑉 𝜑𝜏𝑚𝑎𝑥
(𝜎, 𝑥) + 2𝛽𝑉(𝜑𝜏𝑚𝑎𝑥

(𝜎, 𝑥)) ≤ 0 

 whenever 𝛼𝑉(𝜑𝜏𝑚𝑎𝑥
(𝜎, 𝑥)) ≥ 𝑉(𝑥), then the system is 𝛽-stable. 

 Lemma  (matrix version of LR 𝜷-stability condition): 

 If there exist 𝑃 ≻ 0 and 𝜀 ≥ 0 such that ∀𝑥 ∈ ℝ𝑛, 𝜎 ∈  0, 𝜏𝑚𝑎𝑥(𝑥)], 

Λ 𝜎 𝑥 + 𝐽𝑤(𝜎)
𝑥

𝑤(𝜎)

𝑇

Ω
Λ 𝜎 𝑥 + 𝐽𝑤(𝜎)

𝑥
𝑤(𝜎)

≤ 0, 

 with Ω =
𝐴𝑇𝑃 + 𝑃𝐴 + 𝜀𝛼𝑃 + 2𝛽𝑃 −𝑃𝐵𝐾 𝑃𝐸

∗ −𝜀𝑃 0
∗ ∗ 0

, 

 𝛬 𝜎 = 𝐼 +  𝑒𝑠𝐴𝑑𝑠
𝜎

0
(𝐴 − 𝐵𝐾), and 𝐽𝑤(𝜎) =  𝑒 𝜎−𝑠 𝐴𝐸𝑤(𝑠)𝑑𝑠

𝜎

0
, 

 then the system is 𝛽-stable. 

Theorem (to maximize the sampling intervals 𝝉𝒔 for a given 

Lyapunov-Razumikhin function 𝑽 𝒙 = 𝒙𝑻𝑷𝒙, 𝑷 ≻ 𝟎) : 

 The system is 𝛽-stable if there exist scalars 𝜀𝑖,𝑠 ≥ 0 such that the LMIs 

 𝜙 𝑖 𝜏𝑠 + 𝜀𝑖,𝑠𝑄𝑠 ≼ 0 are satisfied for all 𝑖 ∈ ℑ, 𝑠 ∈ 1,⋯ , 𝑞 . 

Corollary (to compute the Lyapunov function 𝑽 maximizing the lower 

bound 𝝉∗ = inf
𝒙∈ℝ𝒏

𝝉𝒎𝒂𝒙(𝒙) of the sampling map 𝝉𝒎𝒂𝒙) : 

 The system is 𝛽-stable for any time-varying sampling bounded by 𝜏∗ if there exists 

 𝑃 ≻ 0, 𝜀 ≥ 0 (and additional parameters), such that the LMIs 𝜙 𝑖 𝜏∗ ≼ 0 are 

 satisfied for all 𝑖 ∈ ℑ. 

A conic partition of the state space : 

  The state is divided into a finite number of 

  regions ℛ𝑠, 𝑠 ∈ 1,⋯ , 𝑞 . Each region ℛ𝑠 

  is associated to one sampling interval 𝜏𝑠. 

 A convex embedding according to time: 

  For each region ℛs, a convex polytope 𝐶𝑜 𝜙 𝑖 𝜏𝑠 , 𝑖 ∈ ℑ (finite)  

  is designed (using a Taylor Polynomial of 𝜙) such that ∀𝑥 ∈ ℛ𝑠, 

  (𝑥𝑇𝜙 𝑖 𝜏𝑠 𝑥 ≤ 0  ∀𝑖 ∈ ℑ) ⇒ (𝑥𝑇𝜙(𝜎)𝑥 ≤ 0  ∀𝜎 ∈ 0, 𝜏𝑠 ). 

 

Reduction of the number of inequalities to verify by using : 

𝑥 𝑡 =
0 1

−2 3
𝑥 𝑡 −

0
1

−1 4 𝑥 𝑠𝑘 +
1 0
0 1

𝑤(𝑡) 

Maximum upper-bounds 𝜏∗ for time-varying 

sampling 

 

State dependent sampling functions for a decay-rate 

𝛽 = 0,3 and different 𝑊 

Maximum upper-bounds 𝜏∗ for time-varying 

sampling, without perturbation 

 

Simulation results (sampling intervals and LRF) for 

𝛽 = 0,3 and 𝑊 = 0,01 ( 𝑤 𝑡 2 ≤ 10% 𝑥(𝑠𝑘) 2) 

 

Conclusion 

 Design of a state dependent sampling function allowing to reduce the number of actuations for LTI systems. 

 Offline computation of the Lyapunov-Razumikhin function 𝑉 and the state dependent sampling map 𝜏𝑚𝑎𝑥 ⟹ No additional online computation required! 

 Maximization of the minimal sampling interval 𝜏∗ ⟹ Ensures large sampling intervals even in the worst case! 
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w 𝑡  

𝑤(𝑡) 2 ≤ 𝑊 𝑥(𝑠𝑘) 2 
 

Assumption on the perturbation 

 Consider scalars α > 1, σ > 0,W ≥ 0, 0 < β ≤
ln (α)

2σ 
, such that τmax ∞≤σ . 

 Denote 𝑥 𝑡 ≡ 𝜑𝜏𝑚𝑎𝑥
(𝜎, 𝑥),      𝑥 ≡ 𝑥(𝑠𝑘),      𝜎 ≡ 𝑡 − 𝑠𝑘. 

Theorem (condition depending only on sampled-state 𝒙 and time 𝝈): 

 If there exist 𝑃 ≻ 0, 𝜀 ≥ 0, and (some additional parameters) such that some 

 LMIs are satisfied and such that ∀𝑥 ∈ ℝ𝑛, 𝜎 ∈  0, 𝜏𝑚𝑎𝑥(𝑥)], 
𝑥𝑇𝜙 𝜎 𝑥 ≤ 0, 

 (with some matrix function 𝜙:  0, 𝜏𝑚𝑎𝑥(𝑥)] → ℝ𝑛×𝑛), then the system is 𝛽-stable. 

𝜷 = 𝟎 𝜷 = 𝟎, 𝟏 𝜷 = 𝟎, 𝟑 

𝑊 = 0 (0%) 0,5402s 0,4404s 0,3709s 

𝑊 = 0,0025 (5%) 0,4975s 0,4092s 0,2799s 

𝑊 = 0,01(10%) 0,4271s 0,3364s 0,1573s 

𝑊 = 0,04 (20%) 0,2719s 0,1814s - 

𝑊 = 0,09 (30%) 0,1417s 0,0518s - 

𝑊 = 0,16 (40%) 0,0322s - - 

𝜷 = 𝟎 𝜷 = 𝟎, 𝟏 𝜷 = 𝟎, 𝟑 

Naghshtabrizi & al. [S&CL 2008] 0,2740s - - 

Seuret [CDC 2009] 0,3122s 0,2795s 0,1778s 

Fujioka [Automatica 2009] 0,3316s - - 

Fridman [Automatica 2010] 0,4221s 0,3934s 0,3350s 

Fiter & al. 0,5402s 0,4404s 0,3709s 


