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Abstract

In this paper, we combine a descriptor approach to stability and control of linear systems
with time-varying delays, which is based on the Lyapunov - Krasovskii techniques, with a
recent result on sliding mode control of such systems. The systems under consideration have
norm-bounded uncertainties and uncertain bounded delays. The solution is given in terms of
linear matrix inequalities (LMIs) and improves the previous results based on other Lyapunov

techniques. A numerical example illustrates the advantages of the new method.

1 Introduction

The interest in robust control of time-delay systems this last decade is witnessed by the rich ded-
icated literature (see for instance, [1]- [17] and the numerous references therein). Many existing
results concern systems with unknown but constant delays. But in some applications, such as net-
worked control or tele-operated systems, the assumption of a constant delay is too restrictive: this
can lead to bad performances or, even worse, to unstability

This paper combines two previous results so to obtain a more efficient sliding mode controller
for uncertain systems with time-varying delays and norm-bounded uncertainties. Other results [9]
concern varying delays but may lead to strong conditions which reduces the dynamic performances.

The first of these results is the sliding mode design given in [9], which copes with stabilization
of systems with time-varying delays. The approach relies on the construction on a Lyapunov-
Razumikhin function which allows fast variations of the delay but leads to some conservatism on

the upper bound of the time-delay.



The second result given in [3] concerns the construction of a new class of Lyapunov-Krasovskii
functionals using a descriptor model transformation. Unlike previous transformations, the descrip-
tor model leads to a system which is equivalent to the original one (from the point of view of
stability) and requires bounding of fewer cross-terms. Furthermore, following this approach, stabil-
ity criteria have been given in [6] for systems with time-varying delays without any assumption on
their derivatives (which was the case with the usual Lyapunov-Krasovskii functionals).

The paper is organized as follows: In section 2, we develop a Lyapunov-Krasovskii approach on
a descriptor representation for an uncertain, linear, time-delay system. This provides a stability
condition expressed in term of feasibility of a linear matrix inequality (LMI) (see [1]). Then,
the design of a stabilizing memoryless state feedback is derived. Section 3 deals with the design
of a sliding mode controller. This is achieved through the resolution of a generalized eigenvalue
problem which can be solved efficiently using semi-definite programming tools. In the last section,
an illustrative example is solved using our approach and comparison with previous results are
provided.

Notation:

Throughout the paper the superscript ‘1" stands for matrix transposition, R"™ denotes the n
dimensional Euclidean space, R™*™ is the set of all n x m real matrices. The notation P >0, for

P € R™"™ means that P is symmetric and positive definite. [, represents the n x n identity matrix.

2 Stabilization of linear systems with norm-bounded un-

certainties by delayed feedback

In this section we consider the following uncertain linear system with a time-varying delay:

(t) = (Ao + HA(t)Ep)x(t) + (Ay + HA@)Ey)x(t — 7(t)) + (Bo + HA() Eq)u(t) + Byu(t — 7(t)),
2(t) = ¢(t), t € [=h,0],

(1)
where z(t) € R" is the system state, u(t) € R™ is the control input, h is an upper-bound on the
time-delay function (0 < 7(¢) < h, V¢t > 0). The matrix A(t) € RP*? is a matrix of time-varying,
uncertain parameters satisfying

ATHA®R) <1, V. (2)

For simplicity, we consider only one delay, but the results of this section may be easily generalized
to the case of multiple delays.

We seek a control law
u(t) = Kx(t) (3)

that will asymptotically stabilize the system.



2.1 The stability issue
In this subsection, we consider the following equation:
i(t) = (Ao + HA(t) Eo)z(t) + (Ar + HA(t) Ey)x(t — 7(1)). (4)
Representing (1) in an equivalent descriptor form [3]:

i(t) =yt), 0=—y(t)+ (Ar+ HAEp)z(t) — (A, + HAE)) /t;(t) y(s)ds

or
) 0 I, 0 ¢
Ei(t) = | i - ] sy, (5)
AT -+ HAET _[n Al + HAEl t—7(t)
with
i‘(t) = COl{ZL’(t)7 y(t)}> E= diag{]mo}v
Ar = Ao+ A, Ep = Ey+ By,
the following Lyapunov-Krasovskii functional is applied:
V(t) =z" (t)EPz(t) + Va(t), (6)
where
P = , Php>0, EP=P E>Q, (Ta-d)
P, Py

v = [ Oh /t; yT ()[R + 6257 EyJy(s)dsdo.

The following result is obtained:

Lemma 1 The system (4) is asymptotically stable if there exist nxn matrices 0< Py, Py, P35, R >0
and positive numbers 61,09 that satisfy the following LMI:

U hPT 9 PT 0 hPT 0
A H H
I'=]| % —hR 0 0 <0 (8)
* * —011, 0
i k k * _62h]p
where
ELE
U=y O ErEr 0 o ’
0 h(R+52E1TE1)
I, 0o I,
U, = PT 9 + | P,
Ar -1, Ar -1,

and x denotes symmetrical entries.



Proof. Note that
T () EPz(t) = 27 (t) Pa(t)

and, hence, differentiating the first term of (6) with respect to ¢ gives:

d _p = T L rh r| f
g (T WEPE(D)} = 2" ()P () = 28" ()PT | © ] |

i(t)

Replacing [ 0

] by the right side of (5) we obtain:

AV (¢t o : o
) (0w (0) 4y, (LR + 0BT Ey(t) — [ 7 ()[R + 0.ET Erly(s)ds. (10)
where
@222 [ #ept | O ys)ds
0 t—7(t) Al 7
0 _ _
n,(t) £ 227 (t) PT b | A+ En(t),
A ! -T T 0 n
ny(t) = —2 T (t)P AEy(s)ds
t—7(t) H

Applying the standard bounding
a’b<a"Ra+b"R7'b, Va,b€eR"VRER™ :R>0,

and using the fact that 7(¢) < h, we have
0

no(t) < TET(t)PT _
A4
-

R0 ATIPE(t) + Ji_, ) " (s)Ry(s)ds

0

< hxT(t)PT
Ay

0 AT]PE(t) + fi_py" (s) Ry(s)ds.

Similarly
0

m <o FOP |

] [0 HY)Pz(t) + 0,2 (t)ET Era(t),

0

1y < hdy 'z (t)PT H

] [0 HT|Pz(t) + 09 /tth y' (s)E] Eyy(s)ds.

Substituting the right sides of the latter inequalities into (10), we obtain

d‘;gt) < z'(H)I'z(t) (12)
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where

0

1

=04 hPT R0 ATP + (570 + w1y P" | Y | o HTIP

Therefore, LMI (8) yields by Schur complements that I' < 0 and hence V < 0, while V > 0, and
thus (4) is asymptotically stable [13], [4]. L
2.2 State-feedback stabilization

The results of Lemma 1 can also be used to verify the stability of the closed-loop obtained by
applying (3) to the system (1) if we set in (8)

A=A, +BK, i=0,1, Ey=FEy+ FE:.K (13)

and verify that the resulting LMI is feasible. The problem with (8) is that it is linear in its variables
only when the state-feedback gain K is given. In order to find K we apply again Schur formula to
I, the ¥ term being expanded. We thus obtain the following matrix inequality:

_ A -
Uy hPT Y 0 v Y 6Pt 0 65 ' hPT 0
A R! hl, 0 ET H H
* —hR™! 0 0 0 0 0
* * —hR™! 0 0 0 0
. <0
* * * -0 I, 0 0 0
* * * * —0, ' hl, 0 0
* * * * * —5;1[p 0
| * * * * * * —5;1hIp |
(14)

Consider the inverse of P. It is obvious, from the requirement P; > 0 and the fact that in (8)

—(Ps + PI) must be negative definite, that P is nonsingular. Defining

@ 0

Pl=Q=
Q [QQ Q3

] and M = diag{Q, Irxtmiptq)} (15a-b)

we multiply (14) by M7 and M, on the left and on the right, respectively. Choosing

R_l = Q1€7



where ¢ is a positive number, and introducing §; = d;"' and 0, = 6, ', we obtain the LMI

where

)

*

h 3 0 QT 0 QT E%
A1Q1€ hI O
—hQ16 0 0
* —thf-: 0
* * —o11,
* * *
* * *
* * *
0| -|o 1o | ]
_ ) ho
2 [ H ] 2 [ H ]
0 0 0
0 0 0 <0
0 0 0
—hdsl, 0 0
* _51]]) 0
* * —05h »
0 I o 1, |
h n + T - n )
Ar -1, ere Ar -1, ]

(16)

Substituting (13) into (16) and denoting Y = KQ1, Br = By + B;, we obtain

Theorem 1 The control law of (3) asymptotically stabilizes (1) if, for some positive number e,
there exist scalars 6, > 0,05 > 0 and matrices 0 < Q1, Qa, Q3,€ R™™ Y € R™™ that satisfy the

following LMI:

*
*
*

*

[ Q2+ QY QAL+ YTBE - QF + Qs

—Q3 — Q5

*

*

*

*

he(A1Q1 + B1Y)

0

—heQ

*

*

*

*

hQ3
hQF
0
—hQqe
*
*
*

*



Q EL +YTET hQTET 0 0 ]
0 RQYET  §1H  héH
0 0 0 0
0 0 0 0 —0
—611, 0 0 0
s —héI, 0 0
* * —611, 0
* * * —(_52hfp |

The state-feedback gain is then given by
K=YQ"

3 Sliding mode controller

In this section, we focus on time-delay systems that can be represented, possibly, after a change of

state coordinates and input, in the following regular form ([9],[18]):

le(t) o (AH + HA(t)Eo)Zl<t) + (Adll + HA(t)El)Zl(t — T(t))

de +(Arz + HA(t) Ea)22(t) + Aqiaza(t — 7(1))
dthgt) _ iél(A%Zi(t) + Agizi(t — 7)) + Du(t) + f(t, 2),

z(t) = ¢(t) for t € [—h, 0]

where z(t) = (21,22)7, 21 € R"™, 29 € R™, Aij, Auijyi = 1,2, j = 1,2, Ey, k =0,1,2, H are

constant matrices of appropriate dimensions, D is a regular m x m matrix, the matrix A(¢) is a

time-varying matrix of uncertain parameters, u € R™ is the input vector, 7 is time-varying delay
satisfying 0 < 7(¢) < h, ¥Vt > 0, z/(0) is the function associated with z and defined on [—h, 0] by

z(0) = z(t + 0), ¢ is the initial piecewise continuous function defined on [—h, 0].

We will assume that:
Al) (All + Adlla A12 + Adlg) is controllable.

A2) f is Lipschitz continuous and satisfies the inequality
||f(t7 Zt)” < FM(ta Zt)7 vt > Oa

where Fy(t,z;) is a continuous functional assumed to be known a priori,

A3) A(t) is a time-varying matrix of uncertain parameters satisfying AT (t)A(t) <1 V' ¢.

Consider the following switching function:

s(z) =20 — K2z

7



with K € R™* (=™ Let Q, © be the linear functions defined by

Q@@):§¥A%—KAM%@» (22)

G(Z(t)) = Eozl (t) + EQZQ(t)

and let Dj; be the following functional:

|
+ |Adee — KAa2|| sup |[|z2(t +0)] . (23)
—h<0<0

Du(z) = ([[Ader — KAgu|| + | KH[[ | Ex]]) sup |[[z:(t +0)
—h<0<0

Following [9] and using the results of previous section, we are able to design a sliding mode

controller that will stabilize system (20) under less conservative assumptions on the delay law.

Theorem 2 Assume A1-A3. If, for some positive number ¢, there exist positive numbers 61,02 and
matrices 0 < Q1, Qo, Q3 € RI—m)x(n=m) 'y ¢ Rmx(n=m) that satisfy the following LMI:

[ Qy+QF Xi2 0 hQ3
* —Q3 — QF  he(Am Q1+ Ag2Y)  hQF
* * —he@q 0
* * * —he@)y
* * * *
* * * *
* * * *
I * * * *
QIEL +YTET hQTET 0 0 |
0 hQITET 6,H  héoH
0 0 0 0
0 L Y} (24)
—011 0 0 0
* —héol 0 0
x * —6I 0
* * * —0shI |

where
X = Ql(A,{l + Agn) + YT(Asz + A§12> - Qg + Q37

then the sliding mode control law

- s(z(2))
u(t) = =D71|Q2(t) + (Fu(t, z2) + Dar(z) + | KH| [|©(=())[| + M)m , (25
where K =Y Q7', M >0 and s,9,0, Dy are defined in (21)-(23) , asymptotically stabilizes system
(20) for any delay function 7(t) < h.



Proof : The proof is divided into two parts. The first one is dedicated to the proof of the
existence of an ideal sliding motion on the surface s(z) = 0 , the second part to the proof of the
stability of the reduced system.

Attractivity of the manifold:

Consider the Lyapunov-Krasovskii functional

V() = sT(2()s(2(t) = lls(=(6))]I* (26)

Differentiating (26) on the trajectories of the closed-loop system gives

V() = 2s7(t)(Q(=(t)) + ;[Adgi — K Agi) z(t — 7) + Du(t) +
[t z) = KHA()[O(2(1)) + Erz(t — 7(1))]),

Using the expression of the control law (25), we get

2

V() = 25" (1) (D (Aazi — KAqi)zi(t — 7) + f(t,2) — KHA)[O(2(t)) + Erz1(t — 7(t))] —

)

[FM(t,Zt) + DM(Zt) + ||KH|| ||@(z(t))|| n M]HiH

then we derive that:
V < —2M ||s(z(t)]| = —2MV (t)=.

This last inequality is known to prove the finite-time convergence of the system (20) into the surface
s =0 ([18)]).

Stability of the reduced system:

On the sliding manifold s(z) = 0, the system is driven by the following reduced system:

d21 (t)

dt

According to Theorem 1, this system is asymptotically stable for any delay law 7(¢) < h if, for some

= (All + Ang =+ HA(t) (EO + EQK))Zl (t) + (Adll + AdlZK + HA(t)El)Zl (t — T(t)) (27)

positive number ¢, there exist positive numbers d1, 0, and matrices 0 < Q1, Q2, Q3, Y € R™*(—m)
that satisfy the LMI (24). ' )

Remark 1 Note that the explicit knowledge of the time-dependance of the delay is not required in

the expression of the control law u(t), all is needed is the knowledge of an upper bound h.

4 Example

We demonstrate the applicability of the above theory by solving the example from [9] for a system

without uncertainty. Consider system
t(t) = Ax(t) + Age(t — 7) + Blu(t) + f(x,1)], (28)
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delay upper bound | type of delay
Theorem 2 3.999 time-varying
Gouaisbaut et al [9] | 1.65 constant
Ivanescu et al.[10)] 1.46 constant
Fu et al.[§] 0.984 constant
Li and de Souza[l4] | 0.51 constant

Table 1: Comparison of results for example (27)-(28)

with a time-varying delay, where

am| 20 Ay = R B = b (29)
1.75 0.25 —0.1 —0.25 1

By an appropriate change of variables; this system is equivalent to:

2(t) = Az(t) + Agz(t — 7) + Blu(t) + f(z,1)],

~ 2 ~ -0.9 -0. ~
Ao 0.25 0 A, 0.9 —0.65 B 0 . (30)
1.75 2 —-0.1 —-0.35 1

As the pair (12111, 12112) is not controllable, the system cannot be stabilized independently of the

where

delay.

For this system, previous published works give the following results:

— In the case of a constant delay and f = 0, the system may be stabilized using a linear
memoryless controller u(t) = Kuxz(t) for the following maximum values of h: h = 0.51 by [14],
h =0.984 by [8] and h = 1.46 by [10]. By sliding mode control for the case of constant delay and
f # 0 the maximum value of h = 1.65.

— Applying Theorem 2 in the case of a time-varying delay and f # 0, the corresponding value
of h = 3.999 is achieved.

This is summarized in table 1.

5 Conclusions

The problem of finding a sliding mode controller that asymptotically stabilizes a system with time-
varying delay and norm-bounded uncertainty has been solved. A delay-dependent solution has been

derived using a special Lyapunov-Krasovskii functional. The result is based on a sufficient condition
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and it thus entails an overdesign. This overdesign is considerably reduced due to the fact that the

method is based on the descriptor representation. As a byproduct for the first time on the basis

of the descriptor model transformation the solution to the stabilization problem by the feedback,

which depends on both, non-delayed and delayed state is solved. Finally, a numerical example

shows the effectiveness of the combined method: sliding mode and descriptor representation.
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