Robustness of sliding mode control under delays effects: a case study.
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ABSTRACT

Sliding mode control is a possible way to tackle the challenging problems of control. The robustness of such control with
respect to nonlinearities has been demonstrated, but in presence of delays is it still a “good control”? Thus, the paper aims
at studying the effects of time delays on the performances of systemns controlled using sliding mode approach. Some papers
are concerned with such studies [15][16][17] but only oscillations and their frequencies have been investigated for first and
second order systems. Here, for higher order systems, we give some preliminary results showing that either oscillations may
occur with an estimate of theirs maximal amplitudes (proportionnal to the delay and to the gain) or instability may occur
for large delays or gains. For the investigated example, simulations confirm those results and suggest that:

1. some bifurcations occur: the number of switching frequencies is growing,

2. a non linear gain achieves stabilization despite the time delay control.

1. Introduction

Sliding mode control has a deep historical background:
one of the reasons is that many physical systems have
some discontinuity in their dynamics, as for mechani-
cal systems with Coulomb friction (see [29]) or electrical
systems with ideal relays. This has led control theorists
(mostly in eastern countries) to begin with the study of
some relay-based control systems. This kind of research
was the starting point of the variable structure system
theory: the control commutates between d different val-
ues in order to force the system flow to behave as “a non
smooth contracting map”, which means the motions con-
verge to the origin with some discontinuity in the time-
derivatives of the state variables. In the development of
sliding mode control, which is a particular case of variable
structure system control (d = 2), many authors (as An-
dronov, see [3]) introduced in the switching device some
nonlinear terms depending on a small parameter € in or-
der to obtain a real qualitative behavior. Then, one makes
€ tend to zero in order to derive results in sliding regime
viewed as an ideal behavior (see [1}[2]).

Based on such theory, many different control schemes have
been developed (see [7][10][11][21][22][23][28](29]). For ex-

ample, it is well known that if a complex system can be
stated into a normal form such as (see [19])

%:xm, Vi=1...(n—1),
% = f(t,2) +9(t, z)u, )
Yy =2,
or such as (see [13])
dx; .
it =gy, Yi=1...(n—1),
4on _ ; (@ 2
dt f(t,:c,u, u, -, U )7
Yy =2,
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then a sliding mode strategy achieves stabilization be-
cause the nonlinearities are dominated (see [5](24](26}(27])
for (1) and [14] for (2)).

However, time-delays are also natural components of
many engineering devices (see |25 in these proceedings),
for which time history is “backwarded”. They are re-
puted to deteriorate the stability of feedback controllers.
Then, in this paper, we shall investigate some properties
of sliding mode control under such relay-delay effects. In
[15}[16][17], the question of the periods of induced oscilla-
tions was studied for first and second order systems. Here,
conditions for the estimation of amplitude of oscillating
solutions are given for more general orders. Moreover,
through an example, simulations confirm the obtained
preliminaries results, suggest that (for this example) some
bifurcations are occurring, and illustrate that the use of a
non linear gain can suppress the time-delay inconvenience
leading to an effective stabilization of the system.

2. Some preliminary results

Problem formulation

In the following, we assume that in (1) the gain func-
tion g(t,x) is constant and equal to g (this assumption
can be overcome, as we shall see in eqn.(15)) and that
|f(t,x)| < My. Thus, selecting a linear sliding hypersur-
face S described by the equation

s(z) = Z:ai:ci, an =1, 3)

with the a; coefficients determined such that ag + a1z +

...+ z" is an Hurwitz polynomial, we apply a classical
sliding mode control (if (Vs, g) # 0)

u(t) = ueq(t,xa))—gsign(s(t)), )



Ueq(t,2(t)) =

i=1

_é (2 azip1(t) + f(t, x(ﬂ)) ,(5)

so that § = —ksign(s), where k > 0.

However, a practical question is “what are the qualitative
behavioral changes of the system (1) with control (4) under
delays effects?”. For instance, if the output sensors cannot
provide instanneous informations on the state, then

y(t) = h(z(t — 7). (6)
We assume that 7 is a constant delay, and that a recon-
struction of z(t — 7) is available via y(t): such a recon-
struction is possible either via a numeric approximation
(see [4] for systems without delays) or via an observer
for which separation principle or finite time convergence
is valid (see [6],(9] for systems without delays). So, the
applied control is also delayed, and (4) becomes

u(t) = et (t — 7)) — Ssign(s(t -7,

One can conjecture that motions of (1) with control (7)
will lead to some oscillating solutions, which amplitude
will increase with the delay, the gain k and the speed of
change of the control near the sliding surface.

A preliminary result
Let us consider V(z(t)) = 3s°(z(t)). The function

n—1 n-—1
Z ;41 (t) bl Z aia:H.l(t - T)
=1 i=1

+£(t,z(t)) — f(t,z(t — 7))

—ksign(s(t — 7)), (8)
has a countable number of discontinuities (similar proof
to [15(16][17]): then s(t) = s(t — )+ [ _(w)dw holds.
Now using (?7?)

8t =
AfD (Ueq)

§(t) =

A" (ueq) — ksign(s(t — 7)), (9)
(teq(t, z(t — 7)) — ueq (¢, 2(2))) (10)

Il

V(z(t)) < (s(t -7)+ /t ir é('tu)du)) x
(gAY (teq) — ksign(s(z(t — 7)), (11)
= —kls(t—7)| +gA{" ™ (ueq)s(t — 7)
+K2 ] [sign(s(t — 7)) sign(s(w — 7))]dw
+g° / AT (uea) AL T (teq)dw. (12)
Using -

/ [sign(s(t — 7)) sign(s(w — 7))|dw <7,  (13)

and assuming that ‘AE“” (ueq)‘ < M (this is the case

for example if ueq(t,z) is at least locally Lipschitz in

its second argument, 7 is small, and the dynamics are
bounded) leads to

V(z(t)) < (M1 —k)/V(z(t — 1)) +7(k* +g° M?). (14)

Note that, if we assume that in (1) the gain function
g(t,z) is not constant, a similar inequality may be ob-
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tained, say

V(:l:(t)) <wy/V(z(t—T1))+B). (15)
Thus, it appears that (14) is useful. It is straightforward
to see that we need gMT < k to hold (this will be assumed
throughout the rest of the paper) and that V =y + V2,

,,_2 k2 2 ag2y2
(V2 = —((,;_—;w’—f)lr)-) leads to

it < —gpult=7)
N ay*(t—1) . (16)
Weo (Ve + V2 +300))
a = k—gMT. (1n
Using a linearized equation leads to T‘,’;"E— < mr that is
Vak® +g°M?*) > (k — gMT) > 0, (18)
ensuring that solutions will reach
Roo = {2 €R™:5°(2(t)) <2Veo}, (19)

(only for initial values sufficiently closed to this set). But,
at the price of stronger conditions, one can obtain infor-
mation on the set of initial conditions for which solutions
tend to Reo. For this, using y(t) = y(t—7)+ fct—r y(w)dw
(because of the countable discontinuities of %(t)) and (16)
leads to:

. o a
9 < v+ myz(t ~T)

o (20)

¢
/ ywydw <
t—1
Lo
ov3Y
Using Razumikhin’s theorem (see Section 5. Appendix,

and [25]) we assume that |y(t + s)| < gly(t})|,Vs < 0 for
some ¢ > 1. Then,

?(w — T)dw. (21)

WOl <~z (@Veo —ara) ly (1)
+ 4‘2 (Voo + o)’ (). (22)

This leads to the convergence condition (2Vee — a7) > 0
(with a > 0), this is

V2(k? + g*M?) > (k - gMT) > 0,
and for initial conditions in the set

_ 20 2 2V — ar
I_{:cER :|s*(x) 2V°°‘<V°°2Vw+a'r}' (24)

(23)

Remark 1 Note that condition (28) in more restrictive
than the previous one (18), since (28)=(18).

3. A case study: results compared to
simulations

Example 1 Consider:

21 (t) = z2(t),
{ #2(8) = 21 (s (t) + u(t), (25)
using s(x) = x2 + 2z leads to the classic control:
u(t) = —x1(t)z2(t) — 2x2(t) — ksign(s(t)). (26)

First, if we set k to 10 and suppose that a 0.1 time delay
has been neglected in the control design procedure, then
one can found M = 30, for the given initial conditions,
Vo = 12 = 14.3. More over as condition (23): V2(k* +



a*M?) > (k — gMT) > 0,1000v/2 > 7 > 0 is valid (so,
from remark 1, (18) is valid), then the previous results
ensures that solutions initiated in the set

I:{xeﬂ”: 32(.@)-2—‘;0 <193}, @7)
(as soon as M does not increasel) reach the set
R, ={z € R":s(z(t)) <286}. (28)

This is confirmed by the simulations shown in Figure 1.
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Figure 1: System (25) with control (26) k = 10, delayed
by 7 =0.1.

It is interseteing to note that 1 and x2 have one oscil-
lation frequency which leads to a limit cycle (see Figure

2).

Figure 2: Phase portait of system (25) with control (26)
k = 10, delayed by 7 = 0.1: convergence to a limit cycle.

Thus an interesting further investigation is the study of

the limit cycle (estimation) and the determination of its
frequency.

For differents values of k and T the system converge to a
band around the sliding surface (see Figure 3).
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Figure 3: System (25) with control (26) k = 1000, delayed
by T = 0.08.

But, it is important to stress that as the parametres are
varying biffurcations occur: for example with k = 1000
and T = 0.08, z; and x2 have three oscillatory frequencies
(see Figures 3 and 4), leading to an asymptotic limit set
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Figure 4: Zome of Figure 3 showing the period three.

with three loops (see Figure 5). Note that the parameters
k = 10 and 7 = 0.1 leads to divergent motions. Lastly,
from the engineering point of view, one would like to de-
rive a sliding mode control which is less sensitive to time



Figure 5: Phase portait of system (25) with control (26)
k = 1000, delayed by T = 0.08: convergence to an asymp-
totic set with three “buckles”.

delays effects. Thus on the bases of this first analysis it
seems clear that if the gain k is no more linear but nonlin-
ear one can achieve stabilization either without time delay
or with small time delays.
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System (25) with control (26), the following non linear
gain k(t) = 4z1(t)(3z1(t) + 23 (t)) and 7 = 0.1s.
This is confirmed on this example : if we apply con-
trol (26) with the following non linear gain k(t) =
421 (£)(3z1(t) + 23 (t)) (the design procedure will be devel-

opp latter) and T = 0.1, then the applied control is

ult) = —z(t—7)x(t—7T)—2x2(t—7)
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—k(t — 1) sign(s(t — 7)), (29)

Et—1) = dm(t—7)(Bzi(t—7)+ z3(t —7)),(30)

s(t—7) = z(t—T)+2x:(t— 7). (31)

and motions converge to the origin and oscillations are
cancelled (see Figure 6).

4. Conclusion

These preliminary results concern the study of the sensi-
tivity of sliding mode control with respect to time-delay
effects. It is shown that, under some conditions (18) or
(23), motions will reach an asymptotic limit set Roo given
by (19) around the sliding surface. Moreover, we obtained
some informations about the set of initial conditions guar-
antying the motions to converge to Roo. But it is clear
that, some other questions arise from this study and the
obtain simulations:

1. is it possible to relax the hypothesis?

2. can we obtain an estimate of the asymptotic limit
set in the phase plane (multiple “limit cycle”)?

3. can we obtain some precise informations on the os-
cillations frequencies?

4. how can we make the sliding mode strategy insen-
sitive to time-delays?

5. Appendix: some background on time
delay-systems

A time-delay system of retarded type is a differential equa-
tion that has, in the simplest case, the form

(t) = f(t,z(t), x(t — 7)).

This class of systems belongs to the more general class of
functional differential equations. A good reference on this
subject is the book by Hale’s [18]. The main difference
between these systems and ordinary differential equations
is that there are infinite-dimensional: the state at time ¢
is no more the vector z(t) but the function denoted x.
and defined on the interval [—7, 0] by z¢(s) = z(t + s), for
s € [|-1,0].

Concerning the stability analysis, a straightforward appli-
cation of the second method of Lyapunov to time-delay
systems is only possible for a restricted class of systems:
in the general case, this method needs some adaptations.

(32)

The first extension of Lyapunov’s method has been pro-
posed by N. Krasovskii. In this method, the classical no-
tion of Lyapunov function is replaced by the notion of
Lyapunov-Krasovskii functional, that is a function of the
state «; and possibly the time ¢ (see [8] or [18] for more
information). As for the non delayed case, existence of a
Lyapunov-Krasovskii functional is a necessary and suffi-
cient condition for the uniform asymptotic stability.

In the second extension — Lyapunov-Razumikhin func-
tion method — the classical notion of Lyapunov function
(denoted here V (¢, x(t))) is kept but, as noticed by Razu-
mikhin, it is worthless testing that the function V is de-
creasing along all the motions of the systems: it suffices to
check the solutions that tends to run away from the equi-
librium, i.e. the solutions leaving a given neighborhood
of the equilibrium.

Theorem 1 (Krasovskii [20]) Assume that z =0 is a
solution of (32), i.e. f(t,0,0)=0. Let u, v, w, p: R" —



RT be continuous, non-decreasing functions, with u(s),
v(s), w(s) positive for s > 0, with u(0) = v(0) = 0, and
p(s) > s for s > 0. If there is a continuous function V :
R x R® — RT such that:

L. u(llzl)) < V(t,2) < v(jlall), ¥t € R, Ve € R™,

2. V(t,z(t) < —w(lz@))  V(t+ s,z(t + 8) <
p(V(t,x(t)), Vs S [_T7 0]7

Then the null solution of (32) is uniformly asymptotically
stable. n
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