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1 Introduction

Volterra difference equations (i.e. equations with discrete time [10], whose right
hand side can depend on the whole previous history) arise in the mathematical
modelling of some real phenomena [1][6][11][13] and also in various procedures
of numerical solution of some differential and integral equations.

This motivates an essential interest in investigating the asymptotic properties
of the solutions and in developing appropriate methods for the analysis. In par-
ticular, a variety of methods have been used to investigate stability of Volterra
difference equations such as direct Liapunov method, comparison theorems,
z-transform, etc. (see e.g. [3][4][5] and references therein). In the paper [7],
topological methods were used to study stability in the first approximation of
some nonlinear Volterra difference equations. The same approach will be used
in this paper for estimation of the bounds on the solution. The knowledge
of these bounds is quite important because they represent the error between
exact solution of the original problem and its difference approximation.

To obtain these bounds we shall interpret Volterra equations as operator equa-
tions in appropriate spaces. Such approach for integral equations was used in
the books [2][9][12] and for functional differential equation in the book [8].

The structure of the paper is the following. Relations defining the resolvent
and the variation of constants formula for linear and nonlinear cases are given
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in Section 2. The estimations of the resolvent (and, in particular, summability
of the resolvent without assumption of summability of the coefficients) are
obtained in Section 3. Estimation of the solutions in the various spaces are
given in Sections 4-6.

2 Resolvent

In this section, we consider the form of equations defining the resolvent, and
also the general representation of the solution for some Volterra discrete equa-
tions.

2.1 Implicit schemes

Consider a system of linear equations

j
zj =) v+ fj, 720, (1)
k=0

where 7 and k are integers, vectors x; € R", R" is a linear n-dimension space
equipped with some norm |-|,a;; are prescribed n x n matrices, and finally
f; € R" are a given sequence of perturbations.

Let us assume that a unique solution x; of system (1) does exist for all finite
j. Note that a sufficient condition for the solution existence and uniqueness is
the following: det (I — a;;) # 0 for all j > 0. Also, if the solution of system
(1) does exist for arbitrary f;, then the conditions det (I —a; ;) # 0, j > 0
become necessary as well.

Let us find the solution z; as a function of f;, £ < j and auxiliary n x n
matrix 7, ;,0 < j < m, referred to as a resolvent [9]. Multiplying both sides
of equation (1) by 7y, ; from the left and summing with respect to j from
7 =0to j = m, we obtain

m

m J
D g (@ = i) =D Tmg D ek =
3=0 k=0

7=0

2 2 m
Z Z T'm,j Qjk Tk = Z

k=0 j=k j=0 k=3

m, m, m )

Let us require that the resolvent 7, ; satisfies, for any m and 0 < 5 < m, the
relation

m
Tm,j = Z Tk Gk — Ay, 0 <7 < m. (3)
k=j

Tm,k ag.j 1'7(2)



Then, by virtue of (2) and (3)

m m
Z Tm.j (T — Z Tm,j + Qm,j) T,
= iz
and hence
Y (rmjfi + amjz;) = 0. (4)
7=0

Changing the sum in the right hand side of (1) according to (4) yields the
desired form of the solution

J

zj=fi =D Tinfe (5)

k=0

So, if the solution of equations (1), (3) does exist, then it can be represented
in the form (5).

Let us prove now that

Zrmkaky Zamkrk,j kgjgm (6)

Substituting z; (5) into (1), we have

J

J k 7 7 j 7
Dokt aie) fo=2 @ik Dtk =2 ajkrea fi= Y Y ajirik fi
k=0 =0 =0 k=l k=0 l=k

k=0

From here and arbitrariness of fj, since from(3) 7, does not depend on the
fx, it follows that the resolvent satisfies also the equation

m
Tmg = 9 Gk Tk — Gmj- (7)
k=

Comparing (3) and (7), one verifies (6). Note that, if the matrices a;y in
equation (1) only depend on the difference j — k (i.e., a;x = aj_ for all
0 < k < j), then the resolvent r, ; also only depends on the difference j—k (i.e.,
rjx = Tj—x) and moreover by virtue of (3) and (7),

J J
r; = —a; + Z Qj_k Ty = —a; + Z Tj—k Qk. (8)



2.2 Nonlinear equations

Equations (3), (7) for the resolvent allow the derivation of the variation of
constants formula for the nonlinear Volterra difference equation (with G, :

R" > R"):

zj = fj+ i ajx [vx + Gi (vg)] - (9)

k=0

J
Since this equation is obtained from (1) by replacing f; with | f;4+ > a;x Gi (2k) |,
k=0
by (5) we have

j ik j 7
xj = fit D rinfe— Z aj Gy (1) = = D0 D riwaraGr (1) = =30 riparaGi (1) -
k=0 k=0 1=0

1=0 k=l
From here and (3), it follows the variation of constants formula

5= = i Ui+ Ga ). (10

2.3  Ezxplicit schemes

In a similar way, we can obtain an expression for the solution of the Volterra
equation

j
Tj41 = a; T; + Z ajr Tk + fj, j>s, xs= Tp. (11)
k=s

Here, s is an initial time moment, x, is a prescribed initial condition, a; is
a given sequence of n x n matrices, and all other notations are the same as
in equation (1). Let us denote by R, ; the resolvent of equation (11) which
represents the n x n matrix with R, ,, = I, where I is an identity matrix.

Multiplying both sides of equation (11) by R,,41 j+1from the left and summing
in j from j = s to j = m > s, we obtain

m m
Z Rpi1j+1 Tjp1 =Ty — Bpg1 s To + Z Ryt
j:s j:S



m
(Rm+1,j+1 aj+ Y Rnsip %y‘) Tj+ Ring1jn fj} :

Jj=s k=j

Hence, the resolvent R, ; for any fixed m satisfies (as a function of j < m)
the equation

m
Ryi1j = Rmt1j+10; + Y Ryt gy 7 < m, Ripyimer = 1.
k=j
Tn addition,
Tm+1 = Rm—H,s T+ Z Rm+1,j—|—1 f7 (12)

Jj=s

Let us assume that the vector f; = 0 in (12) and that the vector x, has its
[—th component equal to 1 with all other components of z, equal to zero.
Then, by virtue of (12), the [—th column of the resolvent satisfies equation

(11) for m > s. Giving to [ the values from 1 to n, we can conclude that
the resolvent R, ; (as a function of m for any fixed j) satisfies the following

homogeneous equation

m
Rty = am R+ Y g Rij, m >3, Rjj=1.
k=j

3 Estimation of the resolvent
3.1  Convolution equation

Let us derive some estimates of the resolvent r; for the scalar linear Volterra
equation of a convolution type

j
wp == ajpzp,  j=>0. (13)
k=0

Taking into account (8), we conclude that the resolvent r; satisfies the relation

J
rj=a;— Y aj_j g (14)
k=0



Theorem 1 Assume that for all 7 > 0 and m > 0,

aj>al

Aj+m Al+m

a; >0; a1 < aj; forl>j>0. (15)

(the last assumption in (15), meaning that the ratio a;/a;im, for any fized m >
0 18 a nonincreasing function of 7, is sometimes referred to as a logarithmic
convexity of the sequence a;). Let us define

O&ZZCLJ', BZZT]‘. (16)
7=0 7=0

Then

OSTjSa’j: B:a/(1+a), B/a:oczl- (17)

Proof. It is clear that ry > 0. Assume that 7; > 0 for j > s, but for j = s +1,
rsr1 < 0, for the first time . Then, using (14), we have

s+1 s gy s Qg1
S S -
0> rop1 = Qa1 — Y Go1—kTh > Qg1 — Y, Gsy1—kTh = as — ) ———asri | (18)
k=0 k=0 Qs k=0 As+1

But, according to condition (15)

Qsy1—k
— a5 < Qy_p.

Qs

From here and (18), it follows that

S
As41 As41
0> =2+t as; — E As_p T| = ot rs > 0.
Qs =0 Qs

This contradiction shows that r; > 0 for all j > 0. From here and (14), it
follows that r; < a;. Hence we have proven that 0 < r; < a;.

Let us turn to the proof of the second assertion (17): if @ < oc then, by virtue
of (14)

’

o

ﬁza*Zi%—krk:a(lfﬁ)-

j=0 k=0



Hence f = «a/ (1 + «) for a < oco. Suppose now that @ = oo. Note that for
any m > 0 by (14), (15)

m m 1 m 1 Tm
D= Tmei < =Y 0Ty = — (am — 1) =1 == < 1. (19)
=0 =0 Aym =0 Aym am

Consider an auxiliary function y; defined by the equation

J
yi=1-=> aj_k Yk (20)
k=0

By virtue of (5),

j
yi=1—=> ik (21)
k=0

From (21) and (19), it follows that y; > 0. Let us prove that g =1 if a = oo.
Assume, by contradiction, that § < 1 but @ = oco. Then by (21) we get
y; > 1— />0 for all j > 0. But equation (20) implies that
J
Y <1—(1-=58)> ajr— —oc as j— oco.
k=0

This contradiction shows that § = 1 for & = co. Theorem 1 is proven. [ |

Remark 1 In the case aj1; > aj, j > 0, a necessary and sufficient condi-
tion for assuring that the ratio a;/a;m, is nonincreasing with respect to j, is
provided by the inequalities

aji20; —a ;31> 0, >0,
because in this case, the first difference of a;/a;j+m for all j > 0 is nonpositive.

3.2 Nonconwvolution equation

Let us derive some estimates of the resolvent for the equation (1) in the scalar
case and with the kernel a;; = —b; aj_x, where b; and a; are given numerical
sequences. In this case by virtue of (7) the resolvent r; satisfies the equation

J

itk = @5 b — Y ajy bk Tk (22)
=0



If the solution of equation (22) is represented in the form 74 s = Z;; bi, then
due to (22) the function Z; is defined by the equation

J
Zjk = aj — > aj-1 bst Zip (23)

1=0

Let us denote

b=supb;, 7 >0.
J

Theorem 2 Consider the scalar equation (1) with the kernel a;r = —by a;_.
Assume that b; > 0, b < oo and that the a; satisfy the inequalities (15). Then,

0 S Tk S baj_k, 0 S k S ] (24)
If, in addition, either o < oc or inf b; > ¢ > 0, then
j

SUp > Tjikk < 00, k> 0. (25)
k=0

Proof. It b = 0 the estimates (24), (25) are valid because in this case r;; = 0.
Because of this it is assumed below that b > 0. Note that for the proof of (24)
it is sufficient by virtue of (22) to show that all Z;; > 0. Let us introduce the
function w;; = bZ; . Taking into account (23), the function w; satisfies the
equation

i i
Wk =ba; — Y aj e wig = f; = (baj) (wip +Gig),  (26)

=0

1
with G = (—1 + 3 bk+l> wyk, fj = baj.

This equation is of the type (9). Denote by y; the resolvent of the correspond-
ing kernel —ba;. Because of (8), we have

=b (aj — iaj_l yl) . (27)

The relations (26), (27) and the variation of constants formula (10) give us

J 1
Wi = Zyg L (bay + Grg) =y, — Zy] G =y + Y yji <1 — Ebkﬂ) wy k- (28)

=0 1=0



But y; > 0 by virtue of Theorem 1, and yy < 1 due to (27). From here and
(28) it follows that all w;; > 0. Hence, Z; > 0. As a result, the relation (24)

is proven.

For the proof of (25) it is sufficient to show that

sup > wjy < 00. (29)
k

J=0

Here, w;; are defined by equation (28). Let us introduce the space L of se-
quences {goj} with a finite norm ||¢||, defined as

el = 3 o).
7=0

Define the operator Ly over the space £ by the relation
J 1
L =3 yji (1 3 bk+i) i ¢
i=0

where y; is a solution of equation (27). Now, let us rewrite equation (28) in
the equivalent operator form

o =y + Li",

and show that this operator equation has a unique solution. By virtue of
Theorem 1 (conclusion 3 < 1) we have {y;} € £, and also

o0

”LkSOH1 = Z

<yl llell, < oo (30)

io ( bk+z> ®i

Hence, the operator L, maps L into itself. Let us estimate the norm || Ly|| of
the operator L. If o < oo, then ||y||, < 1 by Theorem 1. Consequently, taking
into account (30), we obtain that, uniformly in &, the norm |[Lg| < 1. In the

case inf b; > ¢ > 0, we have sup (1 -3 bk+i) < 1. Furthermore, ||y||, < 1 by
j i
Theorem 1. Therefore, by virtue of (30), in this case sup ||Lg|| < 1 as well.
k

So the operator Lj is a contraction operator and ||Lg|| < 1 uniformly with
respect to k. It means that the operator equation

p=y+ L,y



has for each k a unique solution ©* € £ and, moreover,

[f[, < Nyl + 1zl ],

Hence,

], < llylly [ =11z~

From here, the validity of estimate (29) follows. Theorem 2 is proven. [ |

Remark 2 Assertions (24),(25) of Theorem 2 are valid also for the kernels

a;r = —bjr aj_x where a; are the same as previously and 0 < b, < bji1 4 <

b < oco. In addition, the inequality int b; > ¢ > 0 s replaced by inequality
o

lIlf bO,j >e>0.
J

4 Estimates of the solutions
4.1 Nonlinear Volterra equations

Consider a scalar, nonlinear equation
J
zp=f;—> aj_1 G (%), Jj=0. (31)
=0

Theorem 3 Assume that the functions Gy (x) are continuous with respect to
x and that for i > 57> m > 0,

£i>0, a;>0, 2G;(z)>0, 2 <l=m (32)

Then the solution x; of (31) yields
0 S X S fj'

Note that the equivalent conditions to the last of the inequalities in (32) have
a form ff" < —aLl for all j verifying 0 < j <.

i+l T Q4

Proof. From conditions (32) it follows that x5 > 0. Assume that z; > 0 for
0<j<kbut x, <0. Then

10



k—1

0>:Ek—fk*2ak 1 Gi(m) > o =D ar G () (33)
1=0 1=0
fff Jr—1 — Zak sz xz) f’}kl
But
ar—1 fe—1/fx < ar—1-1.
Hence, due to (33), we have
0> e fom1 = D a1 Gy (m) | = ixk—l > 0.
Jr—1 s Jr—1

This contradiction shows us that z; > 0 for all j > 0. From here, (31) and the
hypotheses of Theorem 3, it follows that x; < f;. Theorem 3 is proven. [ |

4.2 Lipschitz condition

Consider equation (31) where all G; are the same and equal (i.e. G =G, | >
0).

Theorem 4 Suppose a; satisfy the conditions (15) of Theorem 1, the sequence
fj is bounded,

O&ZZCL]‘ < 00,
=0

function G (x) is such that G (x) > 0 and satisfies Lipschitz condition with
a constant C', 1i.e.

|G (z) = G(y)| < Clz —yl.

Then for all j > 0, the solution x; of (31) verifies

|z = fil < AL with [ f]] =sup |73l - (34)

Proof. Let us take arbitrary € > 0 and

Gy + fu)l-

d=ce+|fll, v = sup
ly|<d, k>0

11



Introducing the new variable y; = z; — f;, equation (33) takes the form

Za; ¥G (yk + frx) = Z 05— kyk_z 0k 5 G (yx + fr) —

k=0

Let r; be a resolvent of the kernel —ye~'a; which, by virtue of (8), is defined
by the equation

J
— -1 o .
rp=—7¢ (aJ > aJ—ka) :
k=0

Equation (35) has the form (9) with

J
i Y
fi==> ~ =k Yk Gk = —Oj—k; Gr = (yr + fi) -
k=0

Hence, the application of the variation of constants formula (10) gives
J

yj:_zga] k Uk+27“g kgzak zUz*;Zm kG (yk + fr) -

k=0 =0 k=0

Observe now that

J k J
er—kzak—l Uy = erj—k Ap—) Y = Zylzr] k Qk—i
k=0 =0 0 k=l =0 k=l
_ZykZTJ 1 aj— kfzyk 27”3 k—1 Q1.
k=0 1=k k=0 =0

It means that

J Jj—k J
~
- Z Yk | —Qj—k + Z Tj—k—1 Q1| = Z Ti—k Yk-
£ k=0 =0 k=0

Thus, taking into account (35) and (10), we obtain that

Z ik lyk ~ G (e + fk)] - (36)

k=0

12

k| -(35)



Let us interpret the right-hand side of equation (36) as an operator T' mapping
the sequence ¢ = {,} into the sequence T'¢ according to the formula

J
T¢=ZW%P%%N%+ﬁ)- (37)

k=0

Let S be a set of all ¢ with the norm

il =sup los| <0, =01,

Let us check that T'S C S. Take an arbitrary £ > 0 and consider the values
of the difference

E
Op — ;G (op + fr) -

in dependence on the values ¢, € [—4,6]. Consider three possible cases.
1) Firstly suppose that || f| < ¢, < ||f] +&. Then,

Yr+ fr >0, ie G g+ fr) >0,

and hence

£
5Z<Pk*;G(<Pk+fk)Z||f||*€:

because ey~ |G (¢, + fi)| < € always holds.

2) Further, if —§ < ¢, < —||f|| then ¢, + fr < 0, i.e. G(fx +¢,) < 0.
Consequently,

€
—5S801«§90k,_;G(90k+fk)§—||f”+5-
3) At last if — ||| < ¢, < [I£] then

o — %G (¢p + fi) < 6. (38)

As a result we obtain that estimate (38) is valid for any ¢, € [—J,]. Besides,
by virtue of Theorem 1 for the resolvent r;, relations (17) are valid for any

13



e > 0. Therefore, using (37), (38), (17) we have T'S C S because

3

J 00
g
Tl <sup > rj_x (o) — ;G (p + fr)] <6> e <.

7 k=0 k=0

Note also that the operator 7' is continuous on S and the closure of S coincides
with S. Further, on the strength of Theorem 4 conditions and relations (17),
we have

ocC
OSTJ', ZT‘]‘ < 1.
J=0

From here, (37) and the Lipschitz condition for G, it follows that for all suf-
ficiently small &, the operator T is a contractive one, i.e. equation (36) has a
unique solution in S, satisfying the estimate ||y|| < d. It means, due to the ar-
bitrariness of ¢, that inequality (34) is valid. Thus, Theorem 4 is proven. [ |

Remark 3 In the statement of Theorem 4, it is possible to replace the hypoth-
esis G = Gy, 1 > 0 by the following, mild condition: all functions G; are such
that Gy (x) x > 0 and they satisfy Lipschitz conditions with the same constant
C.ie [Gi(z) — Gily)| < Cle—gl. 1>0.

Let C; denote some positive constants.

Theorem 5 Let G, = G in equation (31), function G (x) satisfies the condi-
tions G (x) >0, G(z) > —Cy and a; > 0,a =a; + ay + ... < oo. Then

Co=|fll+Cia>z; > —||f|l — aG (Ca) .
Proof. Consider the notation
—1lforz <0 sgnG(0) for G(0) # 0

sgnw = , sgnl =
+1 for x > 0 +1 for G(0) =0

From equation (31), it follows that

1 J
z; < f;— 5 Zaj—l G () (1 —sgnzy) < ||f|l + Cra = Cs. (39)
=0

Similarly, by (31) and (39), we have

J
52 ;=5 Y a0 G (@) (14 sgn.ar) >~ || - aG (Co).

1=0

14



Thus, Theorem 5 is proven. |
Note that Theorem 5 is a consequence of the following, more general assertion.

G () in equation (31) and the function G

Theorem 6 Suppose that G (x) =
> 0 and there exist the constants by < 0, by >

satisfies the conditions: G (x)
0 such that

bi > || f[] = aG (bo) . by > — || f[| — G (bo) .

Assume also that a; > 0 o= a1 +as+ ... < 00.
Then for all j > 0, x; € [by, by].
Proof. By virtue of equation (31) we have zoq € [— ||f||, ||f|]] - Assume that

z; € [by, by for all 0 < i < j —1 but x; ¢ [by, by] for the first time for i = j.
Let us show that it is impossible. In fact by (31) similar to (39) we have

1J
v < fj — 52%4 G (21) (1 = sgn x;) < |[|f] — aG (b) < by,

1=0

1 J
x> fj— 52(13-_1 G (x) (1+sgn x;) > — || f]| — aG (by) > by.
=0

Thus, Theorem 6 is proven. |

Remark 4 Note also that the constants by, by in Theorem 6 do exist either
if G(x) = o(x) as |x|— oo, or if for two nonnegative constants Py, Py such
that PPy < 1, G (z) = O (xP1>as T — 00, and G (z) = O (xp2) as x — —oo.
Theorem 7 Suppose that, in equation (31), the perturbations f; — 0 as i —
00, the kernel satisfies a; > 0, Aa; = aj11 —a; <0, o =a) +as + ... < 00,
and all of the functions G(x) are equal to the same function, Gi(x) = G (z),
where G (x) is a continuous, nondecreasing function, satisfying the conditions
of Theorem & or Theorem 6 and such that G () = 0 < x = 0.

Then x; — 0 as j — 00.

Proof. Let us designate by M, and M, respectively, the upper and lower
limits of the solution z;, i.e.

Mg = m Zj, M, = h_m Zj, ] — OQ.
By virtue of Theorem 5 or Theorem 6, both quantities M, M; are finite.

15



At first, let us show that M; < 0. Assume, contrarily, that M; > 0. Then
there must exist the moment j, > 0 such that z; > M;/2 > 0 for all j > jo.
From here and equation (31), it follows that for all j > j, we have

0<z, < f; - Zaj Gl Y G062
l=jo+1
J—Jjo—1

<f]+ gnlax 93[ |Za] 1 — M1/2) Z aj.
=0

But, in the right-hand side of this inequality, the first and the second sum-
mands tend to zero as j — oo by virtue of Theorem 7, and the last sum-
mand tends to the negative value —aG (M;/M,). This contradiction shows
that M, <0.

Entirely similar arguments yield that M, > 0 : in fact, if we assume that
My < 0, then there must exist a moment j, > 0 such that z; < M;,/2 < 0 for
all j > jo. Because of this for all 7 > j, we have

0>.CU.7‘ ZCLJIG 117[ Z a;_ ZG ZL’Z
l=jo+1
Jo J—jo—1
> f7—|— OI<1'%1<I] G (ZL’Z) Z Qj—) — Z a G (MO/Q) .
=0 =0

In the right-hand side of this inequality, the first and the second summands
tend to zero as j — oo, and the last summand tends to the positive value
—aG (My/2). But this contradicts the left hand side of this inequality, and
hence M, > 0.

So we have proven that M; < 0 < M,. Now let us show that My = M, = 0.
Consider several subcases.

1) First, assume that G (My) > —G (M;). Then from the definition of M there
follows the existence of a sequence j (m) — oo as m — oc such that x¢,) —
M. Further let us take an arbitrary i > —oc and consider for i+j (m) > 0 the
sequence Tjyjmm). From the boundedness of x;; ) and Bolzano-Weierstrass
theorem using Cantor diagonal procedure we can construct a subsequence
j(m(k)) — oc as k — oc such that z;4jmmu)) tends to some limit Z; as
k — oo for each fixed i. Besides by (31) for i + j > 0 we have

Tivj = fivj = D Girjm1 G (1) = firy — Y aint G (z145) -
=0 I=—j

16



Let here j = j (m(k)) and pass to the limit as & — oco. Then we obtain the
equation for z;,

T,= — Z a;—y G (Cl_fl), —oc < 1 < o0, (40)

l=—cc

From the process of construction of x;, it follows that zo= M, and M; <z,;<
M. If ;= M, for all i < 0, then by virtue of (40) we have

Fo= My = — gﬂj a1 G (M) = —G (M) .

l=—0c
From here and the assumption a > 0, it follows that if My > 0 then
0 < M, :—G(Mo)a<0.

This contradiction means that M, = 0. Hence because of the inequality
G (My) > —G (M;) , we can conclude that G (M;) = 0. Therefore, M; = 0.

2) Consider, now, the case where Z; is not identically equal to M, for i < 0.
Then since zo= M, there must exist some moment i, < 0 such that z;,< M,
but z;,11= M. Therefore, by virtue of (40), we obtain

0<%H*@f> Z[%Hﬂ*%%G@ﬂ*%m%ﬂ)

<—ag G (My) — G (My) D laigr1-j — aip—j] = 0.

j=—o

This contradiction shows that My = 0. But 0 = G (M) > —G (M;) > 0, and
hence, M, = 0.

3) Consider, at last, the case —G (M;) > G (M,). Let us introduce a new
variable y; = —z; and a function g () = —G (—z). Then, by virtue of (31),
we obtain

vi=—fi— Z ai—j 9 (y;) - (41)
7=0

In addition, the function g (x) possesses exactly the same properties as G (x)
(i.e. g (x) is continuous, nondecreasing, etc). Moreover

lim y; = =M, lim y; = My, —g(=Mo) = G (My) < =G (M) = g(=M,).
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From here and (41), it follows that with respect to the process y; we have the
case G(My) > —G(M;) that has been considered earlier.

Thus for all cases My = M; = 0. Theorem 7 is proven. |

4.8 Estimates in Lo of the solutions of multidimensional Volterra difference
equations

Let us denote by L, the Hilbert space with elements 2 = (¢, 21, ...) where
x; € R" and R" is the Euclidean n-dimensional space with a norm |.|.

Consider the equation (with perturbation f)

i
z; = fi+ Y a;.Gi(x), j>0, G :R"— R". (42)

=0
Here, f = {fo, f1,...} € L*, f; € R", i.e.

1£1IZ, =" 1£il* < oo

J=0

Assume that the functions G, (x) are continuous with respect to = and there
is a constant v > 0 such that for all z,y € R",

Gi(0)=0, |Gi(z) - Gi(y) o +yl <vlx -yl

At last, a = {a;} is a given sequence of n x n matrices belonging to the space

L. i.e.
oC

lall, =) la;| < o0,
§=0

where |a;| is a matrix norm induced by the Euclidean norm in R™.

Let a (2) be the Laplace transformation of the kernel a of equation (42), i.e.

a(z) =) e “a,

=0

18



where 2z is a complex variable.

Theorem 8 Denote by r; the resolvent of the kernel a. By wvirtue of (8), it
satisfies the equation

rp=—ai+ Y Gk Tk (43)

k=0

Let p(s) be the spectral norm of the Laplace transformation T (—is) of the
resolvent r;, where i = V=1, —oc < s < 00. Recall that p(s) is equal to the
square root of the maximal eigenvalue of the matriz 7 (—is) T (—is), where 7
18 the complex conjugate, transposed matriz with respect to the matriz r. Let
A be as follows:

A =sup p(s), —oc < § < o0.

Assume that v\ < 1, that all the conditions formulated above with respect to
the equation (42) are fulfilled and, moreover, that

for Rez >0, det [1_ a ()] £0. (44)

Then the solution x; of equation (42) satisfies the estimate
- 1/2
llz, = (Z I%'IQ) <E=1+AN A=) S, - (45)
j=0

Proof. Using the variation of constants formula (10), equation (42) can be
rewriten in the form

J J
zj=fi—= > riokfi— > rj-k (Gr (xk) — zk) -

Let us introduce the operator () defined on the space L5 by the relation

g
k=0

and let us check that the operator () maps L5 into itself.

Because the kernel a € L, by virtue of discrete analog of the Wiener-Paley
theorem (see e.g. [5]) condition (44) is a necessary and sufficient one for the
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resolvent 7 to belong to £. From here and (46) it follows that

j i
| <37 Prjorael <3 el el -
k=0 k=0

Hence, using Cauchy inequality, we have

1/2
|hj| <

i V2
> |7“k|] [Z |75 k] ka|2]
k=0 k=0

Its means that

2z, <

> o J 2 2 2
5 |rk|] S5 ol foel? = [P Jl2], < o,

k=0 j=0k=0

and, consequently, QQLy C Ls.

Therefore equation (42) can be considered as the following operator equation
in the space L, with respect to x

$=(Z*Q).f*Q(G(ff)*$)= (47)
Q (G (v) ﬁ):; ik Gk (2r) — 4] ,

where [ is identity operator.

Let us show that the operator in the righthand side of (47) maps the ball
S5 C Ly of radius ¢ into itself. For this, it is sufficient to check that ||Q| < A
because in this case for any x € S5 we have

(I = Q) f = QG () —2)llo, < A+ NQINIfllz, + QU0 <. (48)

Let us estimate the norm of the operator () defined by

1 97 1/2
lQII="sup [1Qzlls,. Qg =|> > ey
||zl o, =1 k=0 |j=0

Because h € L, there exists in £y the Fourier transformation h* (s) of the
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sequence {h;}, which by virtue of (46) is expressed as

oo l 00 00
=Ny =Y € Y e iny =t (s) 2 (s). (49)
Jj=0

=0 7=0 =0

But the resolvent r € L. Hence, its Lo Fourier transformation 7* (s) represents
simultaneously the Laplace transformation, 7 (—is) = 7* (s). In order to cal-
culate the Laplace transformation 7 (s) , let us multiply both sides of equation
(43) by exp (—sj) and sum with respect to j from j = 0 to j = co. As a result
we obtain

T(s)=—[—a(s)] a(s). (50)

The right hand side of (50) can be used to calculate p (s). Further, note that
by Parseval equality and (49),

1 o
Iz, =5 [ 10 GF ds= o / [ (s) " (s)] d. (51)

From (51), relation r (—is) = r* (s) and Parseval equality, it follows that

2

ds

100
hz——/
IHE, =5

r (—is) 2" (s)

/ 2 () ds = 2 %,

Hence, [|Q]| < A. Consequently the operator in the righthand side of (47) maps
the ball S5 into itself. In addition this operator is continuous and contractive.
In fact, suppose we are given two elements x,y € Ss5. Then, similar to (48),
we conclude that

1Q (G () —2) = QG (y) = Ylle, <RIyl = yllz, =< Cllz =y, -

Thus, by virtue of the principle of the contractive mapping, equation (42) has
a unique solution satisfying the estimate (45). Theorem 8 is proven. [
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5

Conclusion

In this paper, some possibilities to use operator methods for investigating the
solutions of Volterra difference equations have been demonstrated, and some
estimates of the solutions have been derived.

Another powerful method is connected with the application of the direct Lia-
punov method: this is to be presented by the authors in a future paper.
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