Mean Square Stability of Difference Equations
with a Stochastic Delay

V. B. Kolmanovskii # , T.L. Maizenberg "
and J.-P. Richard ¢

& Moscow Univ. of Electronics and Mathematics and Space Research Institute
(IKI) of Russian Academy of Science, 109172, Moscow, Novospasskii 3-1-20,
Russia

b State University of Mining, Moscow 100102, Russia

¢ LAIL, CNRS UPRESA 8021, Ecole Centrale de Lille, B.P. /8, 59651 Villeneuve
d’Ascq Cedex, France, corresponding author: jprichard@ec-lille.fr

Abstract

The paper describes mean-square stability conditions for nonlinear delay difference
equations with a stochastic delay. The first part develops a formula for the infinites-
imal operator. Using this formula asymptotic mean square stability conditions are
derived. A final example is provided.
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1 INTRODUCTION

Various problems of the theory of difference equations and their applications
are considered in many papers and books. Sometimes, for the adequate mod-
elling of real phenomena (e.g., in engineering practice), difference equations
with the shift of the argument (or with delay) are being used. Usually this
delay is interpreted as a prescribed constant or as a known deterministic func-
tion of time. But because of the numerous sources of incomplete information,
the assumption made above is not always valid. In this connection, various
problems with non-exactly known values of delay could arise.

In order to take this uncertainty into consideration, sufficient conditions for
independent-of-delay stability have been proposed, as well as delay-dependent
ones ([3], [7] for difference equations). Such results consider that the delay
is unknown (the only information is the assumption that delay is positive),
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or may take advantage of some knowledge concerning the delay bounds, so
to yield less conservative conditions. However, such approach cannot handle
the additional information about, for instance, the most probable value of the
delay between these bounds.

One of the possible ways to model uncertainties in the knowledge of delay is to
interprete it as a stochastic process. This approach is accepted in the paper.
In what follows, we shall formulate the statement of the problem, derive the
form of the infinitesimal operator and obtain asymptotic mean square stability
conditions.

Stability of differential equations with a stochastic delay was investigated in
a number of papers (see, e.g., [1], [2], [4], [5], [6]). In these papers, stability
conditions were derived under assumption that, for each fixed value of delay,
the corresponding deterministic system were exponentially stable uniformly
with respect to all possible values of delay. In other words, these stability con-
ditions are obtained under assumption that the value of delay at each time
moment is exactly known (i.e. it can be exactly measured). Below, the form
of the infinitesimal operator and stability conditions are derived without this
assumption and expressed immediately in terms of the probability character-
istics of the delay.

Though the random case is quite important in applications, the stability anal-
ysis has appeared to be quite difficult without additional assumptions on the
random driving sequences.

In particular, in this paper, delay is interpreted as the Markov process with a
finite number of states and prescribed transitional probabilities which would
appear to encompass many engineering situations. Our further investigation
follows through the Liapunov stability techniques for difference equations and
some familiarity with this theory is assumed.

2 STATEMENT OF THE PROBLEM

Let be given discrete scalar stochastic system described by the equation,

z(n+1)=f(n,z(n),...,x(n —n(n+1)), n>0. (1)

Function f depends on the arguments (n,xz(n), z(n—1),.. ... ,x(n—n(n+1)).

Stochastic process 1 = n( ) is the Markov process with the possible val-
ues of delays 7 = 1,2,...,r and transitional probabilities P;;(m,n). Func-
tions Pj;(m,n) (i,j = 1, ...,7; myn > 1) are conditional probabilities of the



events {n(n) = j} under condition {n(m) = i} . They statisfy the Kolmogorov-
Chapman equations

Pij(m,n) =Y Py(m,s) Py(s,n), forallm<s<n. (2)

k=1

Initial conditions for equation (1) are defined for n = 0 by the relations

2(0) =1(0), (3)

where 1(0),(0),i are some prescribed values. Denote by H the set of all
possible values of 7, i.e. H = {1,2,....,7} and by z(n + 6) the part of the
sequence x(n —1),z(n —2),...,...,x(n —r).

Equation (1) with initial conditions (3) given for arbitrary n, defines the
Markov process X = X (n) with discrete time and the set B of the states
B ={n(n),z(n),z(n+0)} € Hx R

Let (k) be a sequence, k > —r, and let  take all values {—r, —r+1,...,—1}
for each fixed n. Hence, ¢(n + 0) is a part of (k) for k € [n —r,n —1].

Now., let us derive the expression for the infinitesimal operator £ of the process
X. Consider scalar functions V', where

VZV(”? 777 x’ (p(n+0))7
n>0n=1,..,mreRpn+0) eR(O=-1,..—-r).

Define the operator £ over the functions V (n,n, x, o(n + 6)) by the formula

LIV =LV (n,n,z,¢(n+0)) (4)
éE[V(n +1,n(n+1),z(n+1),p(n+1+186))
—Vi(n,n(n),z(n), o(n 4+ 0)],/ nm)=j, s(n)=p(n), a(n+0)=p(n-+)-

Here E [£] /4 denotes the conditional expectation of the stochastic value &
under condition A, and z(n+1) is defined by equation (1). Because of n(n+1) €
H for any n, from (4) using (1) we obtain

L1V (n,n(n),z,o(n+0)) (5)
- ,él Pi(n,n+ D[V(n+ 1k, f(n, o(n), ..oln — k), p(n+1+0)

_V(naja QO(TL), QO(TL + 0)]



Further, let us define the operator £,V

T

L,V = L,V(n,nn),z,on+0)=> Py0,n) LIV (n,n,z,¢(n+0)).(6)

By virtue of (5), we have
[,:V(n,n(n),x, p(n+0)) (7)
=[SV Lk £ ). o~ ), 51 5)
;zlajw,n)m(n,n +1)]
. ;le%j(o, W)V (n, 3, o(n), o(n + 0)) kz:;l Pu(nn+1).

But the last sum in (7) equals 1 for arbitrary j and n. Thus, taking into
account (2), we get

L,V (n,1(n),z,¢(n + 0)) (8)

=S P(0,m 4+ DV (n+ Lk, f(, 0(n),s oo 0 — B)), o + 1+ )

k=1

- z Pa(0, )V (1, k, o(n), o + 0))

= i AWi(n, k, o(n), o(n + 0)).

k=1

Here,

Wi(na k, (p(n)a (p(n + 0)) = Rk(oa n)V(n, k, (p(n)a 9‘9(” + 0))

and AW;(n, k, o(n), p(n +0)) is an increment of W;(n, k, p(n), o(n + 6)) cor-
responding to the change of system (1) at the n-th step under condition that
the delay is fixed and equal to k.

From the relations (4) — (8) it follows the validity of the following lemma.

Lemma 1. For any 0 < ny < no;i = 1,...,7;9(0),¢(f) € R", formula (9)
holds:

Eny x,V (12, m(n2), 2(n2), (nz + 0)) — V(na, i, 4(0),4(0)) (9)



Ny—1

= Enioxi S LIV (K, n(k), (k) (k + 6)).

k=n1

Here E,, x, is a sign of conditional expectation under condition

Xy = X(n1) = A{n(n1) = 4,4(0),¢(0)} € B.

Proof. At first, it is easily to see that

Vi(n2,n(na), 2(na), x(ng + 0)) = V(ny,n(m), x(m), x(ny +0))  (10)

ny,—1

=> [Vk+1,nk+1),2k+1),z(k+1+0)) —

k=n1

—V(k,n(k),z(k), z(k + 6))].

Taking expectation from both parts of (10), we obtain

ETLl,XIV(n27 77(”2)7 z(”?)? x(”? + 9)) - V(’I’Ll, i» ¢(0)7 ¢(9)) (11)
o SV 1k + 1), 2k + 1), 2k + 1+ 6))

—V(k,n(k),z(k), z(k + 6))].

Using properties of conditional expectation, right-hand side of (11) can be
represented as

B {S" BIV (1, m(k + 1), 2(k + 1), 50k + 1+ 6) (12)

k:TL1

=V (k,n(k), 2(k), x(k + 0)/ k. 2k, 2(h+0)}-

Remark that in (11)-(12), instead of the sequence ¢(n) introduced in relations
(4)-(8), we have used the solution of the problem (1),(3). By virtue of this
from (11),(12),(4), relation (9) holds and Lemma 1 is proven.

As for (5)-(6), right hand side of (9) can be written as follows:

no—1 r

Enxy O O Py, k) LUV (k,n, x(k), 2(k + 0)). (13)

k=n1 j=1

Put ny = 0 in (9) and (13). Then, by virtue of (8), for any n > 0, X =
{i,¥(0),%(0)},



EoxV(n,n(n),z(n), z(n +0)) = V(0,4,¢(0),¥(0)) (14)

“Eox X 30 AWk, (k) (K +0)),

k=0 j=1

with

AW;(k, j, o(k), o(k + 0)) (15)
:Pij(07 k+ I)V(k + lvjv f(k7 Sp(k)'/ ) QO(]C - ]))7 90(15 +1+ 9))
—P;(0,k)V(k, j, p(k), o(k + 0)).

From (14),(15) it follows that stability problem for stochastic system (1),(3)
can be reduced to the stability problems for r systems with constant delays
171 =1, where 1 =1, ..., 1.

3 STABILITY CONDITIONS

Without loss of generality stability of the solutions of system (1), (3) will be
investigated under usual assumption

£(n,0,0,...,0) = 0. (16)
Theorem 1. Assume that there exists a function V' = V(n,n, z,¢(0)) such

that for any sequence ¢(k) (k > —r),n > 0,7 € H and some positive constants
C; the following inequalities are met (remind AW; is defined by (15))

1) C1¢*(n) < V(n,n,@(n),p(n+0)) < C, max ¢*(k), (17)

n—r<k<n

2) S AWi(n, j, o), oln + 6)) < —Cs &*(n). (18)

i=1

Then the zero solution of the problem (1),(3) is asymptotically mean-square
stable in the whole. It means that for any

X ={i,¢(0),v(0)} € B, e >0, n>0,

there is § > 0 such that if [¢»(0)|+ max |(6)] < 0, then

—r<<-1
Eox 7%(n) < e, (19)
and  lim FEox z*(n) = 0. (20)



Proof. From (14), using (17)-(18), it follows that

Eox 2*(n) < % max *(7), (21)

Inequalities (21) imply the validity of relations (19), (20). Theorem 1 is proven.

Let us assume further that for some constant Ky > 0 and all n > 0, =z,
xe9 € R, 9,(0), 1,(0) € R" (§ = —1,—2, ..., —r), the following inequality is
fulfilled

| f(n,21,0,(0) = f(n, 22,95(0) | (22)
< Ki(|og — ~’E2| + IE&X . |1, (0) — 1/’2(9”2)-

Note that, due to (16), relation (22) implies for all n > 0, = € R, () € R",
the inequality
(2,0 (0) < Ki(le|* +  max |0(0)]). (23)

—r<f<-1

Inequality (23) has as a consequence the following Lemma 2, which can be
easily proven by induction on n.

Lemma 2. For each solution z(n) of the problem (1), (3) and all n we have

2

max ()| < 2" UKY | max Jo(r) (24)

n—r<s<n

with Ky =max(1,2K;).

Now, let us consider the system which can be obtained from (1), (3) for some
prescribed value of delay, say n = k, where k is one of the integers 1,2, ...,7
1.e.

z(n+1)=f(n,z(n),..x(n — k)), (25)
2(0)=9(0), z(=1) = (1), ..., x(=k) = (=k).

Assume that for the system (25) can be constructed a function Vj,

Vi ::L%(naw( ) ( ))



satisfying the conditions (17), (18), i.e.

Crp*(n) < Vi(n, (1), ...y p(n = k) < Ca [lp Iy (26)
AV =Vi(n+ 1, f(n,p(n), ..o(n — k)...y o(n), ...o(n + 1 — k))
—Vk(na p(n),...o(n —k))
< —Cs¢°(n),
with [, = max Jo(s)]-

Then the deterministic system (25) will be asymptotically stable in the whole.

Now, let us define the function Vj, for the other values of delay 7 in such a way
that stability will be kept for the stochastic case as well. Put

Vk(n7 z, w(_k% ceey 77b(_1))/Pkk(07 n)a n= k:
V(n,m,z,9(0)) = (27)
Cux?, n+#k.
In addition, we assume that for all n and some positive 9,

The constant Cy in (27) will be defined later. Let us calculate for the function
(27) the expression at the left-hand side of (18). By virtue of (15) we have

A= i[PkJ((L n+ 1)V(n + 17j7 f(na (p(n): QO(’I”L - ]))7 Qp(n): QO(’I”L - .7 + 1))
=P (0,n)V(n, j,(n), .o(n = j))].
Because of (26), (27),

A < —C39°(n) + Ay,

where Ay = 3 6y; and, for j # £,
J, 17k

5kj :ij(oa n, +1)V(n + lvjv f(n7 QO(TL)), ey QO(?”L - ]))7 QO(TL), QO(?”L - 7 + 1))
_ij(ov TL)V(TL,], 90(”)7 ey QO(TL - ]))

On the basis of (27),

Orj = CaPri(0,n+1) f*(n, o(n), ...o(n — j)) — C4Pr;(0,n)¢" (n).



But for all n, Y F;;(0,n) <1 — 4. Consequently,
J.i#k

A < @ (n)(=Cy + Caly (1= 6)) + Caky - P00+ 1) [l |[5 -
5.7k
Let us choose constant C4 from the condition

—03 + C4K1(1 — 5) < —05 < 0.

Then, for any sequence ¢(n), the following inequality is met:

A < =C5¢°(n) + KiCy Y- Pej(0,n+1) [l |I5 - (29)
jrith

Let us put ¢(n) = x(n) and substitute (29) into (14). By virtue of (26) we
have for all n,

CiEy xa?*(n) <V (0, k,1(0), ¥(6)) (30)
n—1 n—1

+C4K1 Z Z ij(O, s+ 1)E0’X ||.’ES||? - C5 Z E07Xa:2(s).
s=0 j,j#k s=0

Now let us require that for all j, j # k the series 5 Pyi(0,n+ 1)Ey x H%H?
n=0

are convergent. Sufficient conditions for these requirement are inequalities

ij(O,n) <C™, j#k, C>2K,. (31)

Then, quite similar to the proof of Theorem 1, we can prove relations (21)
using inequality (30). As a result, we have proven the following result.

Theorem 2. Assume that for some k£ = 1,...,r there exists a functional
Vi ,satisfying inequalities (26), and transition probability P;(0, n) of the Markov
chain 7n(n) satisfy the inequalities (28),(31). Then the zero solution of the prob-
lem (1),(3) under condition n(1) = k is asymptotically mean square stable in
the whole.

Remark 1. Let us write the Kolmogorov-Chapman equation for the transition
probabilities Py;(0,n) for j # k,

Pyj(0,n+1) =Y Py(0,n)Pyj(n,n + 1)

s=1



= P (0,n) Pg;(n,n+ 1) + Py (0,n)P;j(n,n + 1)

+ Z Pis(0,n)Pyj(n,n + 1).
5,57#k,s#£j

From here it follows that the functions P;(0,n) for all j, j # k tend to zero
with the desired velocity if all entries Py,(n,n+1) of the transition probabilities
matrix of the process 7(t) tend to 0 with the same velocity, except the entries
of its k™ column which must tend to 1.

Remark 2. From the proof of Theorem 2, it follows that condition (31) can
be deleted if inequalities (26) hold for £ = r and the last of them is replaced
with

AV, < =Cs[ max |p(s)[".

n—r<s<n

4 EXAMPLE

Consider a scalar system
zn+1)=ax(n—nn+1)), n>0. (32)
Here, a is a constant parameter, |a| < 1, and Markov process n(n) takes two

values: either 0 or 1. Probability transition matrix of the process n(n) has a
form

c(n) =q7*",
b (1 —c(n)  c(n) ) Cdm)=1—g, (33)

q > 2.

If n(n) = 0 and |a| < 1, then as a Liapunov function V, satisfying inequalities
(26), we can take V(n,p(n)) = ¢?(n). Let us check now that the transition
probabilities Py (0,n) and Py (0,n) satisfy the relations (28), (31) for k£ = 0
and j = 1.By virtue of equations (2) for Pyy(0,n) and Py (0,n) for n > 1, the
following equalities hold:

Poo(0,m + 1) = Poo(0,n)(1 — c(n)) + Po: (0, n)d(n), (34)
Poi(0,n + 1) = Poo (0, n)e(n) + For (0, n)(1 — d(n)).
If we exclude from (34) the probability Py;(0,7n), then we obtain

10



From here and (33) it follows that

PO()(O, n -+ ].) = (q—n — q_Q")POO(O,n) =+ (1 — q—n)
Hence,

Po(0,n+1)>1-¢">1-q¢ " >0,
P01(07n+1):17P00(07n+1)Sq_n; nzl

So, both relations (28) and (31) are fulfilled. It means that system (32) is
asymptotically meansquare stable if |a| < 1 and transition probabilities of the
delay n(n) are defined by the formulas (33).
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