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1. Introduction

Volterra equations, whose solution is defined by the whole previous history,
are widely used in the modelling of the processes in continuous mechanics and
biomechanics, problems of control and estimation and also some schemes of
numerical solutions of integral and integral-differential equations [1-8].

In this connection, there is an essential interest in such properties of the
solutions as stability, limiting periodicity, boundedness and various estimates of
the solutions defined by the acting perturbations.

In [9], such estimates were obtained for the solutions of nonlinear scalar
integral Volterra equations of convolution type

!

x(t):f(t)+[a(r—s)g(x(s))ds, t>0.
0

Here, perturbation f(¢) is a function of bounded variation on [0, c0). Construc-
tions of the paper [9] were founded on the accurate calculation of the positive
and negative parts of the function g(x) incoming in the above mentioned integral.
Under some assumptions with respect to the kernel a(t), the estimates of the so-
lutions do not depend on the kernel a(¢) and are defined only by the properties of
the perturbation £ (f).

The estimates of the paper [9] were improved in [10] for scalar linear and
nonlinear Volterra integral equations.

In this paper, we consider Volterra equations with discrete time. The estimates
of the solutions for both linear and nonlinear equations are derived, using some
comparison theorems and auxiliary formula for representations of the solutions.




2. Nonlinear Volterra equations

Let us consider Volterra scalar nonlinear difference equation

. _
Xe=) F,j,xj)+ far n>l. (1)
j=1

Theorem 1. Let us assume that, in Eq. (1), f, is a given sequence satisfying
condition

Z: | frt1 — ful < 00, 2)

n=1

and F (n, j, x) is a function with the following properties:

(P1) continuous with respect to the third argument,
(P2) nonpositive for all x € (—o0, 00),
(P2) nonincreasing with respect to n, n 2 j, for all x € (—co, 00).

Then, the solutions x, of Eq. (1) satisfy the inequalities (which do not depend
on F)

n—1 n—1
fo—=1Al= Y1 fiw1 = [l 2% < fo+ il + D1 fi41 = fil,
j=1 i=l
n=l. (3)

It is assumed that in (3) both sums are equal to zero forn = 1.

Proof. Let us introduce the function u, defined by

n 1 n—1l
Uy =ZF+(n’j’xj)+E(f" — A1l —Z|fj+1 _fj|) —€n

j=1 j=l

n n
=Y Fe(o x4 Y (K 3ox)) = By Gy o %))
J=1 j=1

1 n—1
+§(fn =1l = _zl:lfjﬂ - fjl) —€n.
J=




Here, I+ = max(0, F) and € > 0 is some number. First of all, let us show that the
function
Feln, d.x;) — Eplf,dvxp)

is nonincreasing with respect to n, n > j, and nonpositive. Because of the
inequality xF (n, j, x) € 0 for all x € (—c0, 00), we have

F(n,j,x)20 forx<0 and F(n,j,x)<0 forx>=0. @
Further, by virtue of the conditions of Theorem 1,

x[F(n +1,7,x)—F(n, j, x)] 20, xe(—00,00).
Therefore,

F(n-i—l,j,x)—F(n,j,x)SO for-xg
Fn+1,j,x)—F(@n,j,x)20 forx>

0,
0.

From here and (4), it follows that

Fed+1,7,0) - Fi(,7,2) <0, x<0,

Fod+1,4,x)=Fi(, j,x)=0, 20,12
Let us sum both parts of the last relations with respectto / from/ = jto/=n—1.
As aresult, we obtain

Fy(n, j,x)—Fr(, J,x) <0, x<0,

Fi(n, j,x) = Fy(j, j,2)=0, x20, n3>j. 5)

Hence, the sum

Y (B, o x)) = Fi G, Jox)) (6)

j=1

is nonincreasing with respect to » and also nonpositive by virtue of (5).
Let us show further that u; < 0, by considering the different signs of fi. From
the definition of the function u,,, we get

1
ur=Fy(L Lx)+5 (A~ 1Ail) — e

Case 1: fi > 0. From the properties (4) of the function F(n, j, x), any root of
the equation

x=F(,Lx)+ fi




must satisfy the condition 0 < x; < f1. Hence, Fy.(1, 1, %) = 0. Consequently,
up=—c <0for f] > 0.

Case 2: fi < 0. Any root of the equation x; = F(1, 1, x1) + J1 must satisfy
the condition fi < x; < 0. Hence, F(1,1,x;) = Fi(1,1,x;1) and also —f; >
F(1,1,x)) = 0. So, in this case

1
ulé—f1+5(fl*-|f1l)—€=—6<0

for f1 <0.
Case3: fi=0.If fi= fp=-..= fi = 0, then it would be sufficient to come

to the first nonzero number f;.
Let us denote #_ = min(0, F) and introduce one more function vp, defined by

the relation

==Y F_(, j %) = Y (B, J, %)) = F_(j, j, %))

j=1 j=1
1 n-1
—E(fr:+|f1I+Zlfj+1 —fjl) —en, nxl,e>0.
i=1
Let us check that v; < 0, by using the same arguments as above for the proof that
u) < 0. We have
1
n=—F_(1,1,x) — E(fl + |f1|) —e€.

If fi > 0, then any root of the equation x; = F(I, 1, x;) + J1 must satisfy the
condition 0 < x; < f1. Hence, #_(1, 1,x1) = F(1, 1, x) and, moreover, — f] <
SF(L1L,x)<0,ie,0<—F (1,1, x) < fi. Therefore,

1
vléfl—i(fl+|f1|)—€=—f<0-
If f1 < 0, then any root of the equation

xn=F(,1,x)+ fi
will satisfy the condition f] <x; €0, ie., F_(1,1, x;) = 0. It means that v =
= —¢€ < 0. As aresult, for all cases, v; = —e < 0. Let us show that the function
F_(n, j,x;) — F_(j, j, %),
is a nondecreasing function of n. Since the function xF (n, j, x) is nondecreasing
for all x € (00, 00), we can conclude that
x[Fn+1,j,x) = F(n, j,x)] > 0.
Therefore,
Fn+1,j,x)—F(n, j,x) 20, x20.




Besides,
F_(n,j,x)=F(n,j,x), x>0
It means that
F.n+1,j,x)—F_(n,j,x)=0.
From here, it follows that the function
F_(nj,x}—-F_(j,J,x}, n2zj,

is a nonnegative and nondecreasing function of n, n > j. Hence, the sum
n
Y [F-(n j.x) = F-(j, j,x)] 0
j=1
is nondecreasing with respect to n and nonnegative. Let us remark also that, from
the definitions of the functions u,, v, and Eq. (1), it follows that

n
xn=Z(F+(”=jaxj)+F—(ﬂ,j,xj))+f,,=u,1—v,,. (8)
j=l
Further, the sum (6) is nonincreasing with respect to n: then, due to (8), we get

Uyl —up S Fy(n+1Ln+1, x0p1) —e+ %(fnﬂ = Ja = |fat1 — £l
SFin+1Ln+1,x441) ~¢€
=l (n+1n+1 upp) — vpg1) — e 9
Similarly, because the sum (7) is nondecreasing with respect to n, we obtain
for the difference v,+) — v, the estimate
Uppl —Un S —F_(n+ Lin4+1,x41) — ¢
=—F_(n+1,n+1,upp| — vgy) — €. (10)

As a result, we have obtained that u; < 0, v; < 0 and both inequalities (9), (10)
are valid. Now, we have three possibilities.
Case 1:1f u, < 0, vy < 0 forall n > I then by virtue of (8) and conditions

F+(n1j’xf)20a F—(nvjaxj)goa
we obtain

n—1
1
E[ﬁi_lfll_z:ifj+l _fjl] — €N KUy Uy —Up=Xp < —Up

j=l

1 n—]
< E{fn +IAl+ ) 1 fin —fjl]-!-en.

Jj=l1
From here and arbitrariness of € > 0, we derive the estimates (3).




Now consider two cases when inequalities u,, < 0 and v, < 0 are not valid for

alln > 1.
Case 2: Assume that there exists a first moment ng > 1 such that

un <0, 1<n<nyg, ung+120, v €0, 1<n<nyg,
but uny4+1 — vpyy1 = 0. Then we have upyy) — ip, 2 0. On the other hand, by
virtue of (9) and (4)

Ungt] —Uny € Fr(no+1,n0+ 1, tupgq] — Upgp1) — €= —€ < 0.

Case 3: Consider now the second possible case when there exists a first
moment 7y > 1 such that

UR‘{-O’ lgngng, Ul’lg-l-l;(): uﬂg\ol 1~<\R\<_ﬂ0,

and besides vpy41 — iny+1 = 0. Then we have Ung+1 — Uy = 0. On the other hand,
due to (10) and (4)

Ungtl —Ung S —F_(no+ 1, mp+ 1, o] — Vpgt1) — € = —¢€.

Since cases 2 and 3 lead to contradictions, the remaining case 1 proves the
estimates (3): Theorem 1 is proven. O

3. Estimates of solutions of linear Volterra equations

Let us derive the estimates of the solutions of linear scalar Volterra equation
n
t= 3 K i+ fry A3 L (11
j=l

Theorem 2. Let the function K (n, j) be nonpositive and nondecreasing with
respectio n, n = j and perturbations f, satisfy condition (2) of Theorem 1. Then
the solution x,, of Eq. (11) satisfies the estimates (fy =0)

D Ui = fimD=- €3 Y (i = -1+ (12)
j=1

j= j=lI

Here,
1 ,
fr=max(©, N)=5(fI+7), f-=min@0 ))=f-f.
Proof. Let us represent Eq. (11) in the form

%= ) KU, xj=) [K@, /)= KU, D]xj + foe (13)

j=l i=l




Let us show, using the mathematical induction method, that the solution X, of
Eqg. (13) can be represented as

R Ji—Jfim
x"‘; (I=K(mn)...(1-K(, )
5> 1
S UA-K@n)...A=KG, )
Jj=1
x Y [KG.D-K(G - 1,D]x. (14)

I=1
Here, fo =0 and double sum at the right-hand side is equal zero for j=1L
It is clear that, for n = 1 the value x| is a solution of Eq. (13). Let us assume
now that formula (14) for x, is valid for some n > 1 and prove its validity for
n + 1. For this purpose let us subtract from x,. the value x,,. Using Eq. (11) we
obtain

Xntl —Xp=K@m+1,n+ Dxpy1 + fag1 — Jn

+) [Km+1, 1)~ K®, )] (15)
i=l1
Letus divide both parts of (15) by 1 — K(n+ 1, n+ 1). Then, taking into account
the validity of the representation (14) for x,,, we must conclude that Xn41 Can be
also written in the form (14). From the representation ( 14) for x,, and relations
Kn+1, j)=K(n, j) =0, it follows that

= (fi = fi-D+
E)r <Y A—Kmn)...A—KG.J)

j=1

3 1
+,§ I—Kmn)...0-KG,7)

j-1
x Y [KG.D=KG = 1,D]0)4. (16)
=1
Here, fj = 0 and double sum is equal zero for j = 1.
Let us take any ) > (x))4+ and denote by up, the solution of the equation

un=Zn: (fi = fi-1)+

o 1= K@,n)...(1- K, 1)

il 1
*}.2 (I—Kmm)...A=KG.7)




Jj—=1
x> [KG.D-K(G = 1,D]u. (17)

=1

This equation is of the general form u, = a, + E i—1 bjuj. In this form, the
b; are nonnegative since all coefficients (1 — K (J, ])) [K{_] D—-K({G-1,D)]
multiplying the u; in the right-hand side of (17) are nonnegative. Then, we can
use a comparison theorem (the proof is obvious, see also [6]) and conclude that
(%r)4+ < up. Now, let us transform equation for u,, as follows. Remark that Unils
by virtue of equality (17), can be also represented in the form

(I =K@+ 1Ln+1D))ungr = (Fup1 = fa)t

U fioidy
+Z(l—K(n ... A—KG, )

+Z[K(n+ L j) = K(n, /)]u;

j=1
i-1

K(G,D)—-K(-1,
+Z(1—K(rz n).. (1_K(J,J))Z[ G, ) =K@ =1,D]u.

From here and relation (17) for up,, it follows that

1

Upt1 = K(n+ Lin+ Dugr1 + (fag1 — fu)+ + n

n
+) [Kn+1,5) - K@, )]u;. (18)
=1
Let us use once more the mathematical induction method. Forn =1 and n = 2
we have by virtue of (17)

up =K1, Duy + (f1)4,
u=K(2,2Du2 4+ K(1, Dur + (2 — fi)+ + (fi)4

Now let us assume that the relation for u,, is valid for some n > 2 and show that
it will be also valid for n + 1. According to our assumption, we have

n n
u,,=ZK(n, j)uj+Z(fj = G-l 19
=1 j=1
If we substitute, at the right-hand side of (18), expression (19) instead of u,, then
we obtain
n+1 n+l
uns1 =) Kn+1, Juj+ Y (fj = fi-1)+-

J=l j=1




From here, it follows that function u, for all n > 1 satisfies Eq. (19). But, ac-
cording to the conditions of Theorem 2, the kernel K (n, j) defined for n > izl
is nonpositive and also u, > (x,)+ > 0. From here and representation (19), we
conclude that

un < Y (fj = fi-1)+-

j=l
Therefore,

X2 € Ga)e € Y (= =D
=1

In order to obtain the estimate of the solution x, of Eq. (11) from below it is
sufficient to introduce new variable y, = —x,,. As a result we obtain

n
Z(f] . fj—])‘ < (%p)= € xp-
j=l
Theorem 2 is proven. 0O
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