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1. Introduction. Time delays are natural components of the dynamic processes
in physics, mechanics, biology, ecology, physiology, economics, epidemiology, popula-
tion dynamics, chemistry, aeronautics and aerospace, to name a few. Even if the
process itself does not include delay phenomena, the actuators or sensors that are
involved in its automatic control usually introduce such time lags.
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Figure 1: some sources of aftereffect.

This explains the great number of works devoted to this class of systems. During
recent decades, the field of differential equations with delays, also called hereditary
equations or functional differential equations (FDFEs), has been making significant
breakthroughs, and is no longer only a specialist’s field: the reader can see for in-
stance the monographs, quoted here in chronological order, by Bellman and Cooke
[6] (frequency domain approach, integer functions), Krasovskii [81] (extension of the
direct Lyapunov method), Halanay [59] (extension of Popov theory), Lakshmikan-
tham and Leela [83] (differential inequalities, comparison approach), El’sgol’ts and
Norkin [35] (stability, metric spaces), Driver [32], Hale [60] (topological stability meth-
ods), MacDonald [95] (biological applications), Salomon [127] (neutral-type systems,
infinite-dimensional approach), Burton [15] (direct Lyapunov method, periodic solu-
tions), Kolmanovskii and Nosov [76] (comprehensive introduction to stability, with
examples), Malek-Zavarei and Jamshidi [97] (analysis, optimization), Gorecki et al.
[65] (characteristic function, infinite-dimensional tools), Stépan [136] (characteristic
function, robotics), Hino et al. [63] (infinite delay), Hale and Verduyn Lunel [61]
(completed from [60]), Gopalsamy [48] (stability and oscillations based on ecology
examples), Kolmanovskii and Myshkis [74] (deterministic and stochastic FDEs with
many concrete examples), Erbe et al. [36] (oscillation theory), Diekmann et al. [31]
(operator theory approach), Curtain and Zwart [20] (semi-group approach, coprime
factorizations), Kolmanovskii and Shaikhet [80] (optimal control, self-adjusting sys-
tems), Gil’ [45] (stability), Wang et al. [151] (finite-spectrum assignment), Kim [70]
(I-smooth calculus) and some very recent collected works: Dugard and Verriest [33],
Richard and Kolmanovskii [123], Loiseau and Rabah [92]. Of course, this list is far
from complete: other contributions, in French, can be found in [108] and in some
Ph.D. dissertations [129] [22][105][107][118][49][10]. One must also mention the great

contribution of eastern scientists, mainly from Russia or the former Soviet Union (see
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[35] or [76] and references therein). In addition to these monographs, there are nowa-
days many international workshops or specialized sessions, and an increasing number
of papers in international journals dealing with this topic.

This interest is probably motivated by two factors. On the one hand, the fun-
damental aspects are quite exciting for scientists, because specific properties of delay
systems are often surprising. On the other hand, the applications are of real economic
interest: together with the increasing expectations of dynamic performance, engineers
need the models to behave more closely to real processes, and the number of FDE
models used in the sciences and in applied areas has been growing tremendously.
Applications range from physiology and enzyme kinetics to whaling control and food-
webs, from neural networks to laser optics, from studies of engines to the theory
of business cycles, from transportation and communication systems to chemical and
metallurgical processing, from traffic and power control to water resources systems,
from flight mechanics to robot manipulators, from flexible structures to mechanics
of viscoelasticity, from idle speed to air-fuel ratio control problems, from telerobotic
systems and earth-controlled satellite devices to bio-thermo-chemical processes.

One could think that for “small” delay values, the simplest approach would consist
of neglecting or replacing the delays by finite-dimensional approximations; unfortu-
nately, ignoring effects which are adequately represented by FDEs is not a general
alternative, since it can lead to potentially disastrous consequences in terms of stabil-
ity and control design.

Moreover, several studies have shown that voluntary introduction of delays in
feedback laws can also benefit the control (for instance, stabilization [1][50] and dead-
beat control [154] of ODEs, or finite-spectrum assignment of FDEs [57][154] [10]).

The huge variety of applications gives new life to some older parts of FDE theory!
and generates many new ones. Along with the traditional classes, new types of
FDEs are being introduced and widely used in mathematical modelling, for example,
stochastic FDEs, equations with impulses, hybrid and large scale FDEs, distributed
(partial) FDEs, systems of non-integer dimension, equations with state dependent
time lags, n-D systems, and so on. Techniques to investigate modern problems of
FDE theory include many parts of real and complex analysis, functional analysis, op-
erator theory, dynamic systems, theory of stochastic processes, theory of semi-groups,
theory of systems over rings, topological methods, and more.

It would not be possible to present here all the research results and trends in such
a huge field. We shall consider the reduced area of some interesting control ques-
tions related to modelling, stabilization and controllability. Lastly, some references
concerning control are recalled.

2. Models for delay systems.

2.1. Functional differential equations, notion of state. A classical hypoth-
esis in the modelling of physical processes is to assume, in the autonomous case, that
the future behavior of the deterministic system can be summed up in its present
state only. As throughout this paper, we do not consider implicit systems, this leads
to Ordinary Differential Equations (ODEs), described by a n-vector z(t) moving in

1The study of hereditary equations began during the 18th century with Bernoulli, Euler, Lagrange
and Condorcet, then sporadically followed till the begining of 20th with Volterra, and others, to
mention some of the most famous names. But, in the 1930’s, the growing number of technical control
problems showed the need of some global, mathematic statement of the question (in particular, for
the initial value), which was provided by the paper of Myshkis in 1949 [106], who defined the notion
and classification of FDEs.



Euclidean space R™:

(1) #(t) = f («(t),t,u(?)),  t>to;
x(ty) = g € R".

Dots indicate the time-derivatives, and wu(t) denotes the input (control or distur-
bances).

However, in numerous cases (see many examples in [74]), some “aftereffect” cannot
be neglected in the modelling, which means one has to take into account an irreducible
influence of the past. Iit is clear that, for instance, the simple delay equation

(2) &(t) = —x(t — h),

has several solutions (for h = 7/2 : sint, cost,...) that achieve the same value at an
infinite number of instants. Then, the state cannot anylonger be a vector z(t) defined
at a discrete value of time ¢; in Functional Differential Equations (FDEs), the state is
a function z; corresponding to the past time-interval [t — h, t], where h is a positive,
irreducible-to-zero constant (Shimanov’s notation, 1960).

This argument deviation, i.e. the “time-delay” h, may be finite or infinite: it
represents the maximal value of all the (possibly time-varying) delay phenomena in
the process, a “memory time horizon”. Note that the equations as (2) are also called
differential-difference equations, since both kinds of operators are involved.

Two classes of hereditary models are considered: the retarded systems and the
neutral ones (the third, mathematical class of advanced systems, h < 0, is not consid-
ered in this study for reasons of non-causality).

Retarded systems with input u(t) can generally be described by FDEs as

(3) .’L'(t) = f (xta ta ’th), t Z th
z¢(0) = z(t + 6), -h<6<0,
ue(0) = u(t +6), —-h <6<0,

z(6) = ¢(0), to—h <6<t

The nature of physics is known to be nonlinear, and such equations arise very often
in the literature (see [74]). The vector z(t) will be called, here, the solution at time
t (it is also called the “instantaneous state” [76]). Note that the functional notation
x¢ needs the initial condition ¢ for equation (3) to be prescribed on the interval
[<h,0]. In fact, it is more natural to consider as state space the set of continuous
functions mapping the interval [—h,0] into R", denoted C throughout this paper.
Under certain conditions on f [60], for a given, continuous function u(t), t € R, and
any given function y of C, there exists a unique solution of (3) such that z(t) = 2(t) for
t € [—h, 0] (here, z may mean an initial condition). This result can easily be obtained
using a step-by-step method. For instance, let us consider (2), the initial function
©(6) = 1 for all § € [—h,0]. Then, equation (2) on the first time interval [0, h] gives
z(t) = 1 or z(t) = 1 — t. Expression of z(t) can then be obtained on [k, 2h] by using
the same scheme, and so on. The resulting solution is a succession of polynomial
functions of ¢, in increasing degree at each interval [kh, (k + 1)h] (see Figure 2).
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Figure 2: solutions of system (2), h = 1.

Classification as a neutral system implies that in the modelling procedure, the
same highest derivative order concerns some component of z(t) at both time ¢ and past
time(s) ' < t, which implies an increased mathematical complexity. The following
system is of neutral type:

(4) $(t) = f (xtata d:tau't) )
or in Hale’s form [60]

. dF'x
(5) Fay= dtt = f(z,t,u),

where F': C — R™ is some regular (to avoid implicit systems) operator with retarded
argument on time, for instance,

Fz, = 2(t) — Dz(t — w),

with D a constant matrix. Such models may arise from the approximation of hy-
perbolic, distributed parameter equations with mixed initial and derivative boundary
conditions, such as wave propagation in processes including steam pipes or zero-loss
transmission lines [61, 76, 74, 105]. They can also be encountered, however, in robotics
(manipulators in contact with a rigid environment [113]). In this case, due to the con-
tained difference-equation involving %(t), the trajectory may “replicate”, at any time,
any time-discontinuity of the initial condition ¢(t), even if f and D present many
smoothness properties (while the solutions of retarded systems will be smoothed with
increasing time, that is, the differentiability degree of the solution increases with
time).

Nature is nonlinear, we said, but linear models are very useful: they are a bit
easier to deal with and constitute a good basis for investigating many properties of
delay systems. The time-invariant model is

(6) B(t)= Y Dyt —ws)

+ Z (Azw(t — hz) + Biu(t — hz))
=0
4
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where hg = 0, the matrix Ay (constant) represents instantaneous feedback gains; A;,
i > 0 (constant), represent discrete-delay phenomena; the last integrals correspond to
distributed-delay effects, whose influence is weighted by the C; over the time intervals
[t — 75, t]; D; are the neutral part, and B;, G;(s) are input matrices. Here, h =
max; .k {hi, Tj,wr}. Many physical systems can also be approximated by such models
(see for instance [41] and references herein) with, mainly, only one neutral delay
(g=1).

Note that, in (6), C; = —C} for some (j, k) permits one to consider “discrete-and-
distributed” effects such as ftt__:;k C;xz(0)df, and also that some additional approxi-
mation may allow the distributed effects to be replaced by a sum of discrete ones, by
considering that

t

d . .
C(6) 2(6)d6 ~ g ZaiC(%)x(t _ %),

t—1

with constant coefficients «; € R.
Due to this simplification, many results deal with the particular case of discrete-
delay systems defined by

(7) i(t) = Aoz(t) + Z Aiz(t — hy) + Z Biu(t — h;).

The special class of systems with commensurate delays is particularly investigated,
where delays h; = id are all integer multiples of a same positive, constant, basic delay
d (then, h = k¢). In the following, we shall see that several important results are now
available for the design of linear models with commensurate delays.

2.2. Solution of linear, discrete-delay systems. There exist several nu-
merical methods (see [21]) for the construction of approximate solutions for FDEs,
which mainly use step-by-step approaches, i.e., iterative resolution over time intervals
[7h, (4 4+ 1)h] by means of classical ODEs procedures (Euler, Runge-Kutta,...), with
continuity at instants jh. Concerning the general solution of (3), we know [76][61]
that some Lipschitz properties on f ensure the existence of a unique solution for given
@ and u;cp. Of course, as in the ODE case, the explicit solution is not known, but we

can illustrate here the question of linear systems with commensurate delays, described
by:

(8) #(t) =Y (Ai(t — i6) + Biu(t — id))

=0

y(t) =) Cia(t—id), @(6) = @(6) (~k3 <0 <0),
i=0

which solution [142][97] from tg = 0 is

0

k
(tito .0 = FOp0) +3 [ F(-6-i8) Aspl)d6
i=0"Y "%
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+/0tF(t—9)

Here, F(t) is the fundamental matriz, solution of F (t) = Zf:o (A;F(t —i0)), F(0) =
I, F(t < 0) = 0. Of course, the main difficulty is to calculate F(t). It can be done,
by means of infinite-series development, with the Kirillova-Churakova operators,

k
> Biu(6 - ié)} de.

i=0

k
9) Ppa(G) =) ARy (G — 1),
i=0
Py(0) =1, P,(j)=0foriorj<DO.
Then, for any integer A > 0,

A o
F =33 %Pq(j)(t _ 78)7 for t € [0, Ad).

J=0g=j

2.3. Operators in infinite dimension. It is possible to include delay systems
within the larger class of infinite-dimensional systems. This approach, based on some
abstract state space formulation in terms of operators, may benefit from the appropri-
ate definitions of controllability/stabilizability, observability /detectability, etc. that
have been defined in this very general framework. Among the extensive literature
concerning these models, see [7, 20, 29, 28, 69, 99]. For simplicity, following [129], we
reduce this presentation to linear, single-delay systems, say

(10) z(t) = Agz(t) + A1z(t — h) + Bou(t),
y(t) = Cox(t).
We denote by L3 = L3 ([—h,0]; R™) the set of square-integrable functions [—h, 0] —
R™ (the solutions of delay systems in infinite dimension can be reduced [99] to initial
functions ¢ belonging to L£5). The behavior is represented by the variable T, T(t) =
[z(t), 2] = [2°(t), ()], belonging to the Hilbert space My = My ([—h,0]; R") =
R™ x L5. Then, system (10) can be described by
T (t) = AT(t) + Buf(t),
(11) y(t) = Cz(2),
where the operator Ais unbounded, closed, and dense in the space M5, and is defined
by
dwl(t)(9)]
df ’

while the operators E, R™ — Mas, and 5’, My — RP, are bounded and defined by

u(t) — Bu(t) = [Bou(t), 0],

() = C(t) = y(1).

Z(t) —» A& (t) = [Apz®(t) + A1z (£)(=h),

This representation allows one to use the properties of semi-groups and, from the
general theory of infinite-dimensional differential equations, the solution is uniquely
defined by

(12) F(t: To, u) = S(6)To + /0 St — 0)Bu(6)de
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where the family {S(¢),t > 0} is the continuous semigroup of operators spanned by
A [60], satisfying

S(0)=1,  S(t+s)=S8(t)S(s),
% (S(t)To) = AS@)F .5 > 0.

This approach is then a direct extension of the exponential solutions for unbounded
operators (if h = 0, then A is bounded and S(t) = e*). We considered here a simple
class of discrete delays. However, infinite dimension allows distributed delays to be
considered as well, with an unmodified notation. This may be the main advantage
of these general models, but it also presents some drawbacks; for instance, all control
laws that are obtainable from such a formalism are designed under an undiscernible,
distributed form, u(t) = [ 0 5 F(0)z(t+6)d6, that does not allow any a priori preference
of a (often more easy to implement) discrete feedback.

2.4. Geometric approach: systems over polynomial rings. For nonlinear
systems in particular, FDEs appear as a very convenient tool, with a good compromise
between generality and simplicity. For linear systems (and only in this case), the
classical geometric approach (in the sense of Wonham) for linear ODEs has been
generalized, up to a certain point, to systems with coefficients over a ring [137].
Then, the basic idea is to translate these results into the context of delay systems
[18, 19, 66, 86, 104, 143]: instead of defining vectors and matrices over the field of
real numbers R, leading to the vector space R™, one uses R =R[V]?, the commutative
ring of polynomials in the delay operator V with, for commensurate-delays system
(8), V(f)(t) = f(t — 9). Then, (8) becomes

i(t) = A(V)z(t) + B(V)u(?),
(13) y(t) = C(V)z(t),
A(V) € R**"[V],B(V) € R**™[V],C(V) € RP*"[V]

where = belongs to the free state-module R™ = R[V]|", u and y to the associated
input and output free modules (a module is the analogue of a vector space over a
ring). Obviously, the absence of an inverse in R[V] corresponds to the impossibility
of realizing the advance operator V~!. The main advantage of such modelling is
its apparent finite dimension: in addition, since R[V] is a principal ideal domain?,
many results concerning the Smith form and invariant polynomials can be used in the
realization theory. The solutions are directly determined by inversion of the Laplace

transform:

y(s) = Cs(sI — AS)_IBSU(S) +Cs(sI — AS)_1¢(5)7
(14) M, 2 M(e%%) for M = A, B, or C.

2We shall use the classical notations R[V] for the ring of polynomials in vV with coefficients in R,
and R(V) for the ring of rational fractions in V with coefficients in R.

3See [17][118]. An ideal T is an additive sub-group of a commutative, integral ring R, which is
invariant under multiplication by elements of R. It is principal if it is generated by a single element
(T = aR). R is a principal ideal domain (PID) if any ideal of R is principal. In this case, the
submodule V of R" is R-closed if there is a submodule W such that V& W = R". The closure V
of a submodule V of R" is defined by ¥V = {z € R™,3a € R,a # 0,az € V}. Note that V DV while
dimV =dimV .



Several results are obtained in modelling [17], stabilization [57], controllability [129]
and observability [121] indexes, decoupling control [130] and disturbance rejection
[18][19]. It is to be noted that any polynomial feedback u(t) = —F(V)z(t) + v(t),
F € R[V]™*"™ ensures the resulting system to stay in the class (13).

As far as systems with non-commensurate (but constant) delays are concerned,
it is also possible to use the same approach by considering the ring of polynomials
in several delay operators Vi, Va,..., .e. , R[V1,Va,...]. But, the situation in this
case is more complex since the ring is no longer a PID. For distributed delays, some
convolution operator [66] or a ring of distributions [157] are to be introduced, with an
additional complexity (indeed, it seems preferable to extend these polynomial models
to rational, realizable ones, as described in the next section).

However, such a polynomial class of control laws appears to be limited for sev-
eral advanced controllers whose concrete realizations need either rational fractions
(precompensators by state or output feedback [118][119], neutral and 2-D systems
[34][158][120]) or distributed delays (finite spectrum assignment [154], as we shall see).
These lacks will be filled up by the generalized, rational and algebraic types of models,
to be presented in the two following subsections.

2.5. Systems over rational rings. In [118][119][120] the above-mentioned re-
alizability of concrete controllers was emphasized, by working with matrices A, B, C
defined over the larger subring R, (V) of the irreducible, rational fractions in V, whose
denominator has a non-zero constant term:

(15) Ru(V) = {n(V) =p(v)/a(V) € R(V), q(2 = 0) # 0}

R.(V) coincides with the ring of proper fractions in v—1[34][158], but also with non-
anticipative operators?. For example, 1-+v (i.e., y(t) = —y(t — &) + u(t)) belongs to
Ru(V), while £ (i.e., y(t) = u(t + &) does not. This is expressed in the following
properties [119]:

DEFINITION. The transfer matriz: M (s, V) € R(s, V)P*™ is said to be causal if it
has a realization over R,(V), i.e. if there exist matrices A(V), B(V), C(V), D(V)
defined over R, (V) such that

o(t) = A(V)a(t) + B(V)u(t),
(16) y(t) = C(V)z(t) + D(V)u(?),
M(s,V) = C(V)(sI — A(V))"'B(V) + D(9).

THEOREM 2.1. The transfer function n(s,V) = p(s,V)/q(s,V) € R(s,V), with
p(s,V) = po(V) + ... +5™p-(V) and q(s,V) = qo(V) + ... + s*qr(V) is causal if and
only if it belongs to the ring R. C R(s, V) defined by:

1) n(s, V) is s-proper (i.e., r < k),

2) (V) € Ru(V).

The advantage of a model over R,(V) is that any dynamic feedback law also
defined over R, (V) keeps the resulting system in the same class (whereas R[V]-
polynomial system (13) changes of class and becomes R, (V)-rational). Note that
systems over R, (V) are generally neutral (see also Section 2.7).

4 Causality is equivalent to properness defined in [34][158], which transfers were formulated with
z=v"L

8



2.6. Algebraic formalism: Laplace transform models for distributed
delays. As in the previous case, we consider in this part linear models with commen-
surate delays. It is well known that the discrete-delay effect, denoted V(f)(t) = f(t—0)
in the previous section, leads to the operator e~* in Laplace transform. Then, al-
gebraic formalism is near to the previous one R,(V), but explicitly considers this
relation between the derivative s and delay e~*% operators. In 1985, Kamen, Khar-
gonekar and Tannenbaum [68] introduced the set G of the realizable, distributed-
delays transfers in which Laplace transforms can be expressed as rational functions of
s and =, In short, G = {L(distributed delay) € R(s,e~*°)}°. Brethé and Loiseau
[10, 11, 92, 123] recently characterized this set G in a complete way and defined an
other set, the ring of the so-called pseudo-polynomials (because they are analytic func-
tions), & = R[e~*%] U G, which is isomorphic to the quasi-polynomials ring R[s, e~%9].
For instance, F'(s) is the Laplace transform® of the distributed transfer

ho
uoy, oyt = /h F(O)ult — 0)db,

Y(s)
U(s)

(or, the zero-holder operator 1_35_Sh is obtained with h; = 0, hy = h and the kernel
f(6) =1 over [0,h], and f(#) = 0 elsewhere). The main result is that £ is a Bézout
domain [11], whose interest for finite-spectrum assignment will be emphasized in the
section “Control”. Note that analogous conclusion was simultaneously obtained [47]
on the basis of systems over R[s,e™°, %]

2.7. 2-D models and neutral systems. It was noted [34][158] that 2-D models
can be used for the modelling and control of delay systems. The Roesser models (1975)
describe a two-operators system:

(17)

ho
= F(s) = A f(0)e=0do

1

(18) sX = A()X + AQZ + B()U,
wZ = A3X + DZ + B3U,
Y = 01X + C2Z

Here, (s,w) respectively correspond to derivation and h-advance operators. If one con-
siders, for instance, As = I, A3 = A; + DAy, B3 = By + DBy, then (18) corresponds
to the neutral system:

(19) & (t) — D & (t-h) = Agz(t) + Az (t-h) + Bou(t) + Biu(t-h),

which is a special case of (36). Such Roesser models, in turn, allow previous realization
results [34] to be used for stabilization [158], and some matrix factorizations for model
matching [89][90]. Equivalence with the question of realization over R, (V) was shown
in [118][120].

2.8. Rational and finite-horizon approximations. The most common ap-
proach for control of time delay systems has been the approximation by some rational,
then finite-dimension approximations, generally based on the truncation of some in-
finite series. Such estimations are generally inappropriate for time-varying delays. It

5Tnitially, the introduced set © was defined by Laplace transforms of the distributed-delays with
Laplace transform in the set R(s)[e™*"], but in this case there is an isomorphism with G [10].
6in fact, finite Laplace transform is used in this case [98].
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can be achieved by methods such as the well known Padé approximations [13][84],
Hankel operator methods for infinite dimensional systems [67][46], Laguerre-Fourrier
series [115][85][37] or spline approximations [4]. A case study is given in [46] on the
basis of L, error. However, two specific, linked problems arise with that kind of sim-
plification: together with the problem of choosing the truncation order (hence, the
dimension of the approximation), it is very difficult to prove the stability of a closed
loop on the basis of such a reduced model [128][56].

The subsystems description [114][142] is another way to achieve a finite-dimensionall]
model: in the case of a system with commensurate delays, for instance (8), the ap-
proximation is made by considering a finite time horizon. For any variable z(t), one
denotes z;(0) £ 2(0 +48) and Z;(0) = [20(6), 21(0), ..., z:(0)]F. X;(6) is the variable
of subsystem (.5;), available on the time-interval [0, d], with increasing size ¢ + 1. The
behavior of (8) on the time interval [0, (¢ + 1)d] is described by:

Xi (0) = 4,X;(0) + B,U;(0) + R;2:(6),
Yi(6) = C,Xi(6), for 6 € [0,6],

Mo A B, or C
X . . M= A, B, or
Mi=1 s M=ok
M; - M,
Ay o A ©(6-0)
B=| .t |ee)=| #O0)
\ Aiz1 - Az :

This technique is linked in its principle to the previously mentioned, step-by-step
procedure. It was mainly used in [114][142] for studying controllability properties.
However, it appears to be limited because of the size of involved matrices, which
becomes larger and larger as time increases. This implies continuity problems in the
junction of trajectories from model (S;) to (Sit+1).

3. Stability of delay systems. Delays are reputed to destabilize the control
loops. Indeed, system (2) showed that, for constant initial function ¢(6) = 1, the
delay h is a source of oscillations or instability in the time response (replacing it by
0 makes oscillations disappear, whereas h > 7 leads to instability). But, on the
contrary, the following example

(20) U (t) + why(t) — ky(t — ) =0,

shows that delay can also have some stabilizing effect: if, in (20), h is zero, the system
is oscillating or unstable. However it was noted [1] that some values of h > 0 and k£ > 0
make the system converge to zero (see Figure 77).
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Figure 3: system (20) with w3 =k = 1.

Obviously, the ability to analyze the stability of a process is a basic need for the
validation of any closed-loop controller. For instance, let us mention the following,
related aspects:

Asymptotic stability: do the solutions converge toward the operating point, for
sufficiently small initial perturbations? This is the basic, local, asymptotic stability
property.

Robustness with regard to the parameters: what are the admissible bound-values of
the (constant or varying) parameters that assure the convergence? For delay systems
particularly, the question is to know the maximal values of the delays (and, sometimes
the minimal one) that keep the stability property. If this bound is infinite, the process
exhibits the strong property of independent-of-delay stability (i.0.d. stability). But
the assumptions for i.o.d. stability, too, may be very strong in practice and it may be
preferable to look for delay-dependent conditions (d.d. stability), as soon as the user
has information about the possible ranges of the delay variations.

Stability domains with regard to the variables: what set of initial conditions will
make the state definitely converge towards the equilibrium? This question may be
meaningless in linear conditions of behavior, but becomes crucial for wide-range, non-
linear models: in this last case, an answer to this question is necessary to provide the
admissible changes of operating points, or for determining whether bounded additive
perturbations on the state may destabilize the closed loop system.

Guaranteed, exponential decreasing rate: what is the exponential rate of conver-
gence, this means, the velocity of the final controlled process? This point aims to
compare the behavior with a first order, ordinary system: it is related to a—stability
(see below the definition).

Positive invariance: how can one be sure that a trajectory will not leave of a
predetermined domain ? Such constraints may be introduced on the state (for physical
security reasons), or on the control variables (for energy-limiting considerations).

In this section, some stability analysis methods are given with illustrative ex-
amples. Starting with some mathematical background on the stability of FDEs, we
then propose a classification of the corresponding methods: the first part applies
to linear models (foundations, frequency-domain and root-locus methods, matrix-
based methods, complex plane methods, time-varying aspects); a second part deals
with time-domain approaches, that are applicable to both linear and nonlinear mod-
els (first Lyapunov method, Lyapunov-Krasovkii functionals, Lyapunov-Razumikhin
functions, comparison methods). The reader can find some more complete presenta-
tions in the previously mentioned books as [76][33] or also in [22]. As for ODEs, the
stability property is classically defined for system (3) in free motion (u = 0), that is
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supposed to have a unique solution, with an equilibrium solution at zero:

(21) .’B(t) = f(mht)) t > to,
z(0) = ¢(0), to—h <0<t
f(oat) = 07 Vt.

The solution is denoted z(t;tg, ) or, briefly, 2(t). Mainly, the concepts are the same
as for ODEs, but replace the norm of initial values by some uniform norm of function
llell £ max _noeoo |2(6)],|2| denoting a norm of vector .

DEFINITION. The zero solution of system (21) is:

1) Stable if for any € > 0 and any ty there exists § = d(e,tg) > 0 such that
|x(t;t0, ©)| < e for all ¢ € C verifying ||¢|| <& and for all t > to.

2) Asymptotically stable if it is stable and if, for any solution x(t) of the stability
problem 1), we have lim;_, |z(t)| = 0.

3) Uniformly, asymptotically stable if 1) holds with 6 = §(¢) and 2) holds with
uniform limit (t — oco).

4) a—stable if 3) holds with the more constraining condition lim;_, |€**z(t)| = 0,
with a > 0. The constant o is called a guaranteed (exponential) decay rate of (21).

5) Uniformly, asymptotically stable independent of the delays (shortly, i.0.d. sta-
ble) if it is uniformly, asymptotically stable for all positive values of the upper bound
h.

In engineering practice, the parameters of a model are known with a finite preci-
sion only; then, the model can be considered as the sum of two terms:

#(t) = f (0, 8) + Af (1,1)

where the first part f represents the nominal model, and the second part Af repre-
sents the uncertainties on the model. All we know about this second term is that it
belongs to a certain set of functionals D. Generally, the nominal model is linear and
uncertainties are described by their bounds: for instance, in the case of unstructured
uncertainties, D is the set of continuous functions such that [|Af (2¢,t)] < §|z|
(norms), and for structured uncertainties, |Fxi| < |Af (x,t)] < |F$t| (absolute val-
ues) with linear mappings F and F. This yields the following definition.

DEFINITION. The zero solution of system (21) is robustly (asymptotically) stable
with regard to set D if it is (asymptotically) stable for any Af € D.

3.1. Basic stability property in the linear case. In relation to the stability
of the linear equations (6), the necessary and sufficient condition (N.S.C.) is also a
straightforward generalization of ODE’s theory, based on the research of some partic-
ular, nontrivial, exponential solution z(t) = e%.

THEOREM 3.1. The zero equilibrium of retarded system (6), with C;(s) = C;
constant and Dy, = 0, is asymptotically stable if and only if all the zeros (s) of the
characteristic function (22), p(s), have negative real parts,

1 _ eSTj

S

(22) p(s) = det (sI, — Ag — ZAie_Shi + ZCj

=1 j=1

).

Note that in this retarded case, there can only be a finite number of unstable roots,
which is no longer true in the neutral case: if Dy # 0, the term —s Zle Dye=5¢*
is to be added inside the determinant. In the complex plane, there may be infinite
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branches of roots tending to the imaginary axis: conditions based on the sign of the
real parts must then be considered with great care [74]. But, assuming the stability
of the difference equation x(t) + Ele Dyz(t — wy) = 0 (see (36)), it holds that the
number of unstable roots is finite [35].

Then, checking such conditions is much harder than in the ODE’s case: p(s) =
q(s,e™*) is not a polynomial in s and there is no equivalent to the Routh-Hurwitz
test. Hand-calculating the characteristic roots of the very simple, scalar example

(23) i(t) = —az(t) —ba(t—h), x€ R,

(s + a + be™"* = 0) illustrates how difficult it can be to carry a direct analysis of
the transcendental equation (22) for systems with certain dimension, or for designing
some tuning parameters. We shall see in the following that there are many stability
criteria, but none of them gives necessary and sufficient conditions which are simple
and practical at the same time”. These methods are presented in a synthetic way in
[22][27][108][33].

As a general observation concerning delay-dependent and i.o.d. criteria, it is
worth noticing that, when applied to the prototypical system

(24) &(t) = Aoz(t) + Ajz(t — h), =€ R",

the first class often needs the matrix Ag+ A; to be Hurwitz, while the second, of course
more constraining, demands this condition for Ay. Lastly note that the consideration
of multiple delays is accompanied by a huge increase of computational complexity (see
an evaluation in terms of NP-hardness in [140]).

3.2. Linear systems: frequency-domain, root-locus. Then, the stability
analysis of a linear, time-invariant system with delays is grounded in its characteristic
equation (22). Of course, as the characteristic function p(s) depends on the delay,
a system may be stable for some set {wy, h;,7;} and unstable for an other set. The
extensions of Routh-Hurwitz criterion proposed by Pontryagin (1942) or Chebotarev
(1949) [76] are seldom applicable in practice. Besides, the rational approximations
(as Padé’s ones) are not very relevant, since the study has to be carried up to an
undetermined order. Fortunately, there are some interesting methods that allow the
analysis of the characteristic equation in a necessary and sufficient way: in addition to
the Tsypkin i.o.d. stability criterion®, let us mention here the Pontryagin method (for
commensurate delays), the D-partition approach (dividing the space of the parameters
into several regions, which boundaries correspond to critical stability), the methods
by 7-partition (for commensurate delays, dividing the study on intervals of delays) as,
in particular, the interesting method of Walton and Marshall (1987, commensurate
delays, polynomial analysis) or the similar, pseudo-delay approaches (Rekasius 1980,
Hertz, Jury and Zeheb 1984, 1987) and methods by Kamen (1980-1983, commensurate
delays, i.0.d. conditions, methods based on 2-variable polynomials in (s, 2), z = e~%%).

The general drawback of these necessary and sufficient conditions, restricted to
constant delays, is that they are difficult to apply when several parameters are to be

"However, for (23), explicit N.S.C. are known: (23) is asymptotically stable for any value h iff
a+b > 0and a = |b]; it is asymptotically stable for any value of h less than A* if b > |a| and
h* = (b2 — a2?)~1/2 arccos(—a/b).

—hs
8Restricted to single-delay, open-loop-stable transfert functions e Pl

EIOFPTYTAL the Tsypkin
N.S.C. demands polynomials P (degree n — 1) and @ (stable, degree n) to satisfy |P(jw)| > |Q(jw)]
for all w € R.
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tuned. Lastly, we want to mention the Chebotarev method, whose theory needs to
check an infinite number of determinants but, conversely, can be used as a necessary
condition of stability. Description and examples are given in [76]][22][27][108][33].

3.3. Linear systems: methods in the complex plane. Classical stability
conditions such as Nyquist or Mykhailov-Leonhard criteria can easily be generalized
for systems with delays. Indeed, the argument principle, central core of these criteria,
is still applicable since the number of the unstable roots in the complex plane is finite.
The induced methods [76][22][108][33] generally apply, in a necessary and sufficient
way, to constant but non necessarily commensurate delays. They yield computational
difficulties when many combinations are to be checked, with complex parameters.

3.4. Linear systems: matrix-based methods. Several results are expressed
in terms of sufficient (but non necessary) conditions, involving the matrix measures
and norms’?. Compared with previous frequency approaches, this lack of necessity
is compensated by the relative ease of implementation. We shall see in a coming
section, devoted to the comparison approach, that some of these approaches may also
hold for nonlinear models. Among the various methods, let us just recall here the
very representative Mori, Fukuma and Kuwahara criterion (1981)[102] and previous
result by Tokumaru et al. 1975, for single-delay systems, which further gave rise to
generalized formulations (for instance, Brierley et al. 1982, Hmamed 1986, Mori and
Kokame 1989, Dambrine and Richard 1993, Kolmanovskii 1995, Goubet et al. 1997).
These other statements can be found, with examples, in [22][108] [33].

THEOREM 3.2. The system (24) is i.0.d. stable if u(Ag) + || Az1]| < 0. Moreover,
its solution verifies | z(t;0,9)|| < |l¢lle™" (t > 0), where o is the real solution of
equation 1 + ﬁ + %e”h =0.

Other results for commensurate-delays systems, by Chen (1994) and Su (1995),
involve generalized eigenvalues!® and matrix pencils techniques [111]. They need to
check matrices of increased order, obtained by sums and products of Kronecker. Delay-
dependent or i.0.d. criteria can be obtained (see [33]). The main difficulty here is the
high-dimensional computations of large-scale pencils (the dimension multiplies with
the number of delays).

3.5. Linear, time varying systems. Except some matrix-based methods, the
previous results do not apply anymore if the delay is time-varying. The following
example, with T' =1, a = 3.5, b = 4, has been shown [64] to be unstable:

#(t) = —az(t) — ba(t — h(t))
h(t) =t — kT, Vt € kT, (k+1)T] (then A(t) < T)

while for any constant value of the delay h(t) = h < 1, its characteristic roots have
negative real parts. Inversely, for a = —1, b = 1.5, it is asymptotically stable, while
linear time-invariant conditions don’t hold (see also [22], and note that this kind of
delay variation -Fig. 4- corresponds to a T-periodic sampling).

9The measure (or logarithmic norm) p(A) of a matrix A, associated to a norm, is u(A) :lin%J
e—

| Az]]

I+eAl—1 . . . .
Irteal—1 +EE I ; matrix norm is || A|| = sup = Measure may be negative, norm must be nonnegative.
TER™

10A generalized eigenvalue of matrices A and B is a complex number X such that det(A—AB) =0
(the number of finite generalized eigenvalue is at most equal to the rank of B).
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Figure 4: time-varying delay in T-periodic sampling situation.

Then, even if the works which take into account time-varying delays are fewer,
they are of practical interest when designing the control of a process whose delay vari-
ations are actually non negligeable [93] [148][96]. The following methods (presented
for nonlinear systems) have then to be developed and used for this time-varying case,
as for the classical ODEs. For instance, the simple system (2) was shown to be asymp-
totically stable for time-varying h(t) if h(t) < h < 1 (note that this condition is only
a sufficient condition). The special case of linear, periodic-time varying delay systems
(i.e. (7) in free motion with periodic A;, h;) received particular attention, with the
generalization of the monodromy operators and characteristic multipliers encountered
in the Floquet-Lyapunov theory (Stokes 1962, Halanay 1966, see [60][76][22]): but,
here again, delays imply an increasing complexity.

3.6. Nonlinear systems: the first Lyapunov method. The first Lyapunov
method [35] still holds for the system

k
(25) B(t) = A(t — hi) + q(t, x0)
i=0
qt,z0) = q(t,2(t), 2(t — 11(2)), -..x(t — 7% (2))
ho =0, h; = constant, 7;(t) € [0, 7;] continuous,

with a function g such that, for any u;, ||ui|| < e = |lg(t, uo, ..., ur)| < Be(l[uoll +--- +
|lux|]), with constant 3. uniformly decreasing to 0 as e — 0. The “tangent”, linearized
system is, as usual, defined by

(26) i) =3 Aw(t — hy).
i=0

THEOREM 3.3. If system (26) is asymptotically stable, then the zero solution of
(25) is, too. If (26) has at least one characteristic root with positive real part, then
the zero solution of (25) is unstable.

This result can be followed by some small-delays approximation theorem (ob-
tained by continuity of the characteristic roots with regard to delays h;). Here, “small”
is to be understood as “sufficiently small”.

THEOREM 3.4. If Z?:o A; is a Hurwitz matriz, then the zero solution of (26) is
asymptotically stable for small values of the delays h;. If this matriz is unstable, then
the zero solution of (26) is unstable for small values of the delays h;. If 0 is a single
eigenvalue of this matriz, the other having negative real parts, then the zero solution
of (26) is stable for small values of the delays h;.

3.7. Nonlinear/linear systems: time-domain methods. The next subsec-
tions present three approaches based on time-domain, FDEs representations. The
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direct method of Lyapunov has been extended to FDEs in two different ways: the
first one, due to Krasovskii (1963), uses a functional generalization of the notion of
Lyapunov function; the other one (Razumikhin, 1956) keeps the classical approach of
Lyapunov functions but applies it to a certain type of solutions. For further details,
the reader can refer to [76][108][33]. A third approach is based on comparison systems,
and will be presented last (see details in [22][49][33]).

These very general time-domain approaches apply to both linear and nonlinear
systems:

- in the linear case, they contribute to many results on robust stability, whereas
previous necessary and sufficient conditions are quite limited (see a survey of the
induced, sufficient conditions in the first chapter of [33]);

- in the nonlinear case, they simply appear as the only way to acheive the stability
analysis.

3.8. Functional approach of Lyapunov-Krasovskii. This section gives a
short overview of the first class of the above-mentioned, time-domain methods. In
order to extend the Lyapunov’s direct method to FDEs, Krasovskii (1963) proposed
to consider functionals instead of classical Lyapunov functions. This generalization
permits in particular the obtension of some converse theorems. It is based on the
following, classical result:

THEOREM 3.5. System (21) is asymptotically stable if there exists a continuous
functional V(t,¢) : Rx C — RT, which is positive-definile, decrescent, admitting an
infinitesimal upper limit, and whose full derivative V (t,x,) along the motions of (21)
is negative definite over a neighborhood of the origin.

Among the particular choices of the functional V', several authors proposed sta-
bility conditions for linear systems (24) with the following, “generalized quadratic
form”

V() = o(t)T Pa(t) + /_ Oh 2(t + 6)T Sex(t + 0)d6.

This functional, applied to the linear systems, leads to sufficient conditions in the
form of Riccati equations, as follows (see for instance [108]).

THEOREM 3.6. System (24) is i.0.d. stable if there exist positive-definite, sym-
metric matrices P, S, R verifying the following, auziliary Riccati equation

(27) ATP+PA + PAST'ATP+ S+ R=0.

Other i.0.d. conditions [131][33] were formulated in terms of Riccati equations.
More complex functionals lead to delay-dependent conditions, available for discrete-
single [112], discrete-multiple [33][78] and distributed [149][77] delays.

Moreover, many such Riccati-type results were translated in terms of linear matrix
inequalities (LMIs, see [9]) [33][112][109][108][75]. For instance, condition (??) can be
equivalently checked by means of LMIs, as

ATP+PAy+S PA <0
ATp -3 '

Note that the major part of the delay-dependent conditions were obtained by us-
ing some other formulation of the initial, generally linear system. For instance, the
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following system,
i=1

can be written under the three following forms [78],

t—h;

(29) i(t) = Ant) - 3 Ay / sy,

ij=1 t=his

(30) (1) = As(t) - Y A /t (s)s,

0

(31) 4

m t
z(t) + ZA"/ w(s)ds] = Az(t),
i=1 t—h;
with notation
A=Y"A;, Aij=AiAj, hij=hi+hj, h=> h;.
=1 =1

Each formulation can be studied by specific Lyapunov-Krasovskii functionals, leading
to the three different Riccati equations [78],

(32) ATP+PA+mRh+P Y hiAi;RT'BP = -Q,
i,j=1
(33) ATP+PA+ (hPAR™'B] P+ mhAl RA;) = -Q,

i=1

—Q=ATP+PA+

(34) > Rihi+ > ATPA;R;'ATPAh;.

i=1 2,j=1

Then, the system (28) is asymptotically stable if for some symmetric positive matrices
R; and @ there exists a positive solution, P, of one of the equations (32), (33), (34).
The resulting conditions depend on all the delays values, but dependency can be
reduced to some chosen delays [75].

However, in the general, nonlinear case, finding a suitable functional V' can be
compared to... an art! [14][73] This question, already encountered with ODEs models,
is even more pertinent for FDEs. A formal procedure to construct Lyapunov function-
als V for concrete equations with delay was proposed by Kolmanovskii [73][71]. Basic
features of this procedure are as follows: represent the right-hand side of the equation
as a sum of two terms, first of which has the form of an instantaneous negative feed-
back; construct a Lyapunov function v for the auxiliary ordinary differential equation
corresponding to the first term; obtain functional V' from by changing the arguments
of v. Note that various steps of the procedure can be implemented non-uniquely.
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3.9. The Lyapunov-Razumikhin approach. Because of the complexity of
the construction of a Lyapunov functional for nonlinear models, Razumikhin (1956)
proposed another generalization of Lyapunov second method, keeping the idea of
Lyapunov functions V(z(t)) (and not functional V(z;)). The great difference is that
the derivative of the chosen Lyapunov function has to be negative only for special
solutions of the system (very roughly speaking, the idea is to check the sign of the
derivative ¥ only when the state function may leave a set V(z) = constant, see Fig.
5).

THEOREM 3.7. Let u(p), v(p), w(p) and p(p) (R™ — RT) be continuous,
nondecreasing functions, positive for p > 0, w(0) = v(0) = 0 and p(p) > p for
p > 0. If there is a continuous function V : R x R™ — R such that u(|z|]) <
V(t,z) <v(|z|) for any (z,t), and V (t,z(t)) < —w(|| z(t) ||) for states z; verifying
{V6 € [-h,0],V(t+ 6,2zt + 0)) < p(V(t,z(t)))}, then the zero solution of (21) is
uniformly asymptotically stable.

A practical corollary was given in [150], changing the last condition into: v
(t,x(t)) < —w(|| =(t) ||) for states x, verifying V0 € [—h,0], || x(t+0) [|<n || z(¢) ||
for ann > 1.

Figure 5: principle of the Razumikhin’s theory.

3.10. The LaSalle principle. The invariance principle of LaSalle (1960) is a
well known extension of the Lyapunov functions theory, that allows one to study of
asymptotic behavior of ODEs solutions (in particular, the boundedness properties).
It involves the notion of positive invariance of sets, that can be easily generalized
to FDEs. Then, the LaSalle invariance principle was extended to retarded, time-
invariant systems, by using either the Krasovskii functional procedure (Hale, 1965
[60]) or the Razumikhin functions one [58]. We don’t give the statements here (see
for instance [22]).

3.11. The comparison approach. The direct stability analysis of a complex
system often remains too cumbersome or can even be impossible to perform. An
alternative, indirect way is to proceed via a simpler system, called comparison system.
This notion was originally defined for ODEs [100] and then, extended to FDEs [83].
Firstly, we present a wide definition of the idea.

DEFINITION. A system (A) is said to be a comparison system of a system (B) with
regard to the property P (for example, stability of its zero solution), if the verification
of property P for system (A) implies the same property for system (B).
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For instance, the first-order approximation of a nonlinear ordinary differential
equation may be viewed as a comparison system with regard to the local, uniform
asymptotic stability. However, most comparison systems rely on differential inequal-
ities [83][71] and vector-Lyapunov functions'? [23][25][22][51], whose tools constitute
the framework of the approach. The major part of the referenced results use a Razu-
mikhin approach in their proof. The next definition is a continuation of the previous
one.

DEFINITION. Let V : R* — RE (with k < n) be a continuous, positive function
such that V(z) = 0 & x = 0. Assume that, along the solutions of (21), the right-hand
time-derivative (Dini derivative) of y(t) = V(z(t)) satisfies the functional differential
inequality Dty(t) < F(t,y:). Then system 2(t) = F(t,z) is an overvaluing system
of (21) with respect to the function V if the inequality V(x(t)) < 2(t) holds for any
t > to as soon as it holds for initial times t € [ty — h,tg].

Using the assumptions made on V, it is simple to prove that an overvaluing system
is also a comparison system with regard to stability or asymptotic stability. Condi-
tions on functional F to be an overvaluing system are called comparison principles
(as, in ODEs case, the so-called Wazbwski conditions): some of them, very general,
are recalled in [22][33]. A particular but interesting comparison principle can be men-
tioned here for illustration, providing an exponential convergence rate - (this lemma
was proven in [141] for a single-delay inequality, and under this two-delay form in
[51]).

THEOREM 3.8. (LEMMA). Let C, D1 and Dy be nx n matrices with real entries
and let x(t) be a solution of the differential inequality (t > 0),

&(t) < g(z1),
g(z) = -Cx(t)+D; sup z(t—6)+ Dy sup z(t—9).
0000 hy 0000 hy

Assume that D1 > 0, Ds > 0, that the off-diagonal entries of C are non positive, and
that (—C + Dy + Dy) is the opposite of an M-matriz*?. Then the solution z(t) of this
inequality is overvalued by the asymptotically stable solution z(t) of the differential
equation 2(t) = g(z), t > 0, with initial condition 0 < z(0) < 2(6) for h <6 <0
(h = —max{hy, ha}).

If in addition (—C + Dy + D) is irreducible, then there is a constant vy > 0 and a
constant vector k > 0 such that z(t) < kye™ " for t > 0. Here, v and k are obtained
in the following way: < is the positive real solution of the equation Am(Ay) = —7,
where Ay, = —C + D1e"™ + Doe2. k., is a positive, importance eigenvector of A,
associated with the importance eigenvalue A, (Ay).

Vector-norms (each entry of V' is a scalar norm of a subvector z; of z) constitute
a particular case of the general (but hard to solve) vector-Lyapunov function(al)s:
they lead to systematic determination of comparison systems in many cases of FDEs
[22][49][33][138]. Applying this tool on a nonlinear system with a single delay h, a
systematic construction of matrices C, Dy, and possibly Dy (with hy = h, hy = 2h)
is given in [51][33], leading to the following, simple conditions (|.| denotes here the

Vector-Lyapunov functions were simultaneously introduced for ODEs in [5] and [100].

123 matrix A is the opposite of an M-matrix if all its off-diagonal elements are non-negative and if
A is Hurwitz. This latter condition may be easily tested by verifying that all its successive, principal
minors are negative. Such matrix A has a real eigenvalue A, (A) which is greater than the real parts
of all others. Ay, (A) is called the importance eigenvalue of A. If A is irreductible (i.e. if it is not
similar to a bloc-triangular matrix), then there is an associated, importance eigenvector u,, of A
verifying wm, > 0.
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entry-to-entry absolute value of vectors or matrices, M* denotes the matrix obtained
from M by replacing all its off-diagonal entries by their absolute values).

THEOREM 3.9. The zero equilibrium of the uncertain system

&(t) = Ax(t) + Bx(t — h(t))
+f(@(t),1) + g(z(t — h(t),1)
|f(@, ) < Fla|, |g(z,t)] < Glaf,
h(t)<h, B=B +B"

is asymptotically stable if the matric M = (A+ B')* +|B"| + F + G + h[|B’A| +
|B'B| +|B'| (F + G)] is Hurwitz.

Note that it does not need A to be Hurwitz, but A + B’. Such a result is very
closed to the matrix-based methods seen in the linear case'®. Recently, results using
the same comparison approach for discrete-plus-distributed delay systems have also
been obtained [138] on the basis of transformations such as (29). This shows that
some comparison results are directly workable: even if the main question with such
procedure may be its non-uniqueness (dependence with regard to the chosen state
basis and to the decomposition B = B’ + B"'), it provides information about both
qualitative and quantitative stability aspects that were presented at the beginning of
this section. For instance, comparison systems allow to estimate positively invariant
sets, convergence rate, or stability domains with regard to initial conditions: this is
illustrated by the system

u
) R N e
—1+40.1aa(t — h) 0
© TR Ll Jeeen

with bounded, varying parameters|a(.)| < 1.6, |8()] < 0.5, |v()] < 1, [§()] <
0.3, h € [0, hyp]. The results [33] are shown on Figure 6, which presents different esti-
mates in relation with the maximum value h,,. Two simulations are also represented,
inside and outside the estimated domain for h,, = 0.01.

13For unstructured perturbations || f(z,t)|| O a|z||, ||g(z,t)|| O B ||z||, the condition can be stated
in terms of measures as u(A + B') + ||B"|| + .+ 8+ h (|| B'A|| + || B'B|| + || B'|| ( + 3)) < 0.
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Figure 6: delay-dependent stability domains estimates of system 35.

This simplicity, compared with the wideness of the admissible models and possible
applications, constitutes a key point of the comparison approach.

3.12. The case of neutral systems. The above mentioned functional approach
is also fruitful for neutral systems [132][76][61][74]. In this case, the procedure can be
generalized to a slightly more complex one, involving functionals V (Fz;) with notation
referring to (5) and the stability of the operator F' also has to be checked: F' is stable
if the zero solution of the equation F'z; = 0 is uniformly, asymptotically stable. For
instance, considering the (usual) case Fzy = z(t) — Dz(t — h), with constant matrix
D, a necessary stability condition for the linear, neutral system

(36) & (t)— D (t—h) =i At — hy)
i=0

to be stable is that D has eigenvalues inside the unit circle (or, equivalently, is Schur-
Cohn stable), whose property is also called “formal stability” of system (36) [16].
THEOREM 3.10. Consider the equation

(37) %Fxt = f(@),

with f : C — R™ taking bounded sets of C into bounded sets of R™. Suppose F' is stable,
and that u(p), v(p), w(p) are continuous and nondecreasing functions, cancelling at
p = 0 and positive elsewhere. If there is a continuous function V : Rx C — R such
that u([| Fgll) < V(t,¢) < v(lgll) and, along the motions, V (t,z,) < —w(| z(t) |]),
then the zero solution of (37) is uniformly asymptotically stable.

On this basis, Riccati equations can be constructed [33, 132] as well. In 1979,
Kolmanovskii and Nosov [76] also defined the principles of f-stability (generalization of
the above “formal stability” to nonlinear systems) and degenerate functionals (V (x¢)
is said to be degenerate because it may be equal to zero even if the function xz; is
not identically zero) for stability study of nonlinear, neutral equations. Results based
on the comparison approach were given by Tchangani et al. [33][139], together with
estimates of the stability domains and asymptotic-behaviors bounds.
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3.13. Stabilization. Many studies are devoted to the stabilization of time-delay
systems. The previous stability criteria are of course directly involved in such con-
trol study, but some of them are more useful depending on the kind of stabilization
problem.

Concerning the linear, time-invariant models, the methods are related to the con-
trollability properties, with a great interest in the finite-spectrum assignment problem.
Since the stability tests are to be made on the characteristic equation (by previously
presented N.S.C.), they are much simpler in the particular case of finite-spectrum
assignment, since the aim is then to obtain a polynomial equation (hence, with finite
number of roots). This aspect will be presented in the following section “Control”.

Concerning robust stabilization of linear models with constant or nonlinear, time-
varying parametric uncertainties (see for instance [33]), the methods are mainly based
on the time-domain Krasovskii approach or on the comparison approach; both allow
one to deal with time-varying delays, whereas the frequency-domain and complex-
plane methods generally need the delays to be constant.

The problem of stabilization with input-disturbances can be treated by means of
H, norms: this involves time-domain approaches, mainly the Krasovskii generalized
quadratic functionals, leading to Riccati equations or LMIs (see for instance [145][38]
[154][108][109] and their references).

It is to be mentioned that the main part of these last two categories (robustness-
type results) are dealing with systems with memoryless input (i.e. no delay on the
control), which imposes a real restriction: the delay phenomenon is often induced by
the actuators or sensors. A possible solution to this problem consists in introducing
an integrator in the control: the simple system & (t) = u(t — h) is then transformed
by (u(t) = z4(t)) into:

&y (t) = za(t — 1),
& (1) = v(2).

Lastly, constrained stabilizing control is mainly grounded in the positive-invariance
property, which is slightly more difficult to handle in functional spaces. Several results
have been obtained in the case of linear delay systems [110][52][62] and nonlinear ones

[26][33).

4. Structural properties. Controllability and observability of delay systems
have been studied through different modelling approaches. Compared to ODEs, two
main differences arise from the presence of aftereffects (see their illustration on Fig.
7). The first is related to the state variables: instead of reaching a point at a time ¢;,
the actual notion of controllability means to reach a function, which means to assign
the vector z(t) from time t; to time t; + h. Two large classes of properties can then
be distinguished:

- the functional properties aim to reach a function ¢ € C at time ¢, this means
making the behavior reach some predetermined function z; € C. These functional
properties mainly correspond to the infinite-dimensional models; among them, the
spectral properties only concern the eigenvalues, thus, problems of stabilization or
observation.

- the point-wise properties consider the problem of reaching the point x € R"™
(solution at a given time); they can be studied through all the above-mentioned
classes of models.

22



minimum time ?

Figure 7: an illustration of the controllability questions for FDEs.

The second difference is linked with time: even if the model is linear, delays yield
the existence of a required, minimum reaching time. In other words, the usual question
of the reachable sets (obtained, for linear systems, by checking “orders” of Kalman-
like controllability chains) has to be completed by associating a “class” depending on
the time needed to achieve the control.

Lastly, the question of the nature of control laws to be implemented (involving
static or dynamic feedbacks, with discrete or distributed delays) also constitutes an
important issue: controllability properties over R [V] (weak) or over R (V) (strong)
are related to this aspect.

Many authors contributed to this study of structural aspects: surveys can be
found in [129][82][69]. Correspondences between different properties in a unifying
framework (in the module theory) were given by Fliess and Mounier [105][40][92][42]
and leads to practical applications (see for instance [117]). In this paper, we shall
mainly deal with the notions related to controllability.

4.1. Functional controllability properties. Infinite-dimensional models as
(11) received several controllability definitions [29][99], that are of functional type.
The following ones refer to system (11) with solution (12), and are also called “ap-
proximate controllability”:

DEFINITION. The state Ty is Ma-controllable at timet to T; € Ma ([—h,0]; R™) if
there is a sequence of controls {u;} defined in L4 ([0,t]; R™) such that Z(t; Tg, u;) con-
verges to Ty (in the sense of the norm over Msy). The system (11) is Ma-controllable
at time t if all states Ty are Ma-controllable at time t to any T; € Ma ([—h,0]; R™).

Ma-controllability was characterized by means of N.S.C. [29] but the conditions
are not so easy to check. This notion corresponds to a restricted notion (approzimate)
if one compares it with the Ms-strict controllability at time t defined in [29]: it only
involves the limit trajectories that can be obtained by sequences {u;}, because the
domain of definition of the operator Ais strictly included in Ma (only its adherence
is equal to My), while the strict notion needs a unique, concrete control law u to
exist. Other forms of controllability were defined [99] for Ty = 0.

For systems with delayed control but without delay on the state variables, the
notion of absolute controllability was defined (together with simple N.S.C.) in [114].

DEFINITION. The linear system with commensurate delays (8) with the restriction
Vi > 1, A; = 0 is absolutely controllable if, for any initial condition {xo, u(t)ie[—ks, 0] },I
there is a time t1 > 0 and a bounded control law u(t) such that x(t1) = 0 with u(t) =0
for allt € [ty — k9, t4].

THEOREM 4.1. The system (8) with A; = 0 Vi > 1, is absolutely controllable if

k
and only if rank[E, AE, ..., Ay E] = n, with E =" e~®4 B,
=0
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Absolute controllability is actually a functional property, since it implies the abil-
ity to maintain 2(t) at zero on a time interval [t1,t1 + kd]. However, the main problem
resides in its very demanding definition, needing u(t) = 0 for all t € [t; — kd, t1]: such
an “ending free-motion” is too constraining in general.

Another property was defined by Weiss: the R™-functional controllability [155][114]J}
(see also in [129]), in which there is not this zero-input constraint. The definition for
a single-delay system without delay on the input is as follows.

DEFINITION. The linear system (10) is (¥, R™)-controllable (with regard to some
function v € C) if, for any initial condition ¢ € C, there is a finite time t; > 0 and
a control law u(t) € L5 (]0,t1 + k], R™) such that x (t;,u) = Yt — t; — h) for all
te [tl, t1 +h]

This property can be checked by generalizing the notion grammian [155] as in
equation (38).

THEOREM 4.2. The linear system (10) is (0, R™)-controllable (i.e. with regard to
$=0)if

1) there is a finite time t1 > 0 such that

t1
(38) rank ( F(ty — 0)BoBY F(t; — 6)T d0) =n,
0

with F(t) solution of F (t) = AgF(t) + A F(t — h), F(0)=1I, F(t;) =0,

2) the equation Aox(t — h) 4+ Bou(t) = 0, t € [t1,t1 + h]| has a solution u(t) €
Ly ([t1,t1 + h],R™).

Condition 1) ensures R™-point-wise controllability at time ¢;, whereas condition
2) allows the solution to be maintained at the origin after ¢;. Condition 1) can be
replaced by simpler point-wise controllability conditions, which are recalled in the
next subsection.

4.2. Spectral properties. The following spectral properties, as we shall see,
constitute very interesting bases for effective control of linear systems. Spectral con-
trollability can be seen as a functional controllability property, but it only applies to
the problem of controlling the spectrum of the linear system (8) with model over ring

(13),
(39) o(A)={s€C, det(sI—A(c™*))},

in such a way it belongs to some region of the complex, left half-plane. Of course,
spectral properties concern the problem of stabilization (functional controllability to
zero), but they have also been related to behavioral properties [125][124]. We will not
consider here the infinite-dimension models, however, the spectral properties can also
be tested within this framework (see [69]).

DEFINITIONS. The system (8) or (13) is spectrally controllable if, for any s € C,

(40) rank [sI — A(e™°%), B(e™%%)] = n.
It is spectrally observable if, for any s € C,
(41) rank [sI — A(e7°%)T, CT(e™*)] =n.

It is stabilizable if there exists a causal control law which makes it asymptotically
stable. It is detectable if there exists a causal, asymptotic observer of the solution
z(t) € R™.
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THEOREM 4.3. The system (8) is stabilizable if and only if (40) holds for any
s € C, Re(s) > 0. It is detectable if and only if (41) holds for any s € C, Re(s) > 0.

This result was proven in a constructive way in [10], whose work also studied the
question of the realization:

THEOREM 4.4. Any causal transfer matriz on R(s,e™%%) admits a stabilizable and
spectrally observable realization. It also admits a detectable and spectrally controllable
realization.

It was also noted that in relation to delay systems, the notion of minimal real-
ization (in the sense of spectral controllability and spectral observability) does not

always exist (the transfer s—};f;—jﬂ was taken as example [88]).

4.3. Point-wise controllability properties. Many other works have been
devoted to point-wise structural properties: one of the main ones is the so-called
euclidean-space controllability, or R™-controllability. This means, let us recall, defined
for trajectories considered in the vector-space R™. These works probably started
with Kirillova, Churakova and Gabasov (1967), Buckalo (1968), Weiss (1970), Zmood
(1974) (see [129]). All approaches use the same definition, but lead to different con-
ditions (sometimes equivalent). We recall here the definition for linear systems with
single delay (note it corresponds to the notion of reachability), but it can easily be
extended to multiple delay systems with input delays, when the delays are commen-
surate.

DEFINITION.  The linear system (8) is R™-controllable at time ty if, for any
initial condition ¢ € C and 1 € R"™, there is a time t; > 0 and a control law
u(t) € Lo ([0,t1], R™) such that x (t1;¢,u) = 1.

It is R™-controllable if such a time t; exists .

It is strongly R™-controllable if it is R™-controllable at any time t; > 0.

If the above R™-controllability property is restricted to x1 = 0, then the system is
R™-controllable to the origin.

The evolution of the trajectory after ¢; is then not constrained by these definitions
(the trajectory may not stay at 1, contrary to the non-delayed case and to functional
controllability). Two other differences with ODEs are to be noted: the time ¢,
in general cannot be smaller than the delay ¢ (except in the rare case of strong
controllability) and the R™-controllability is not equivalent to the R™-controllability
to the origin (the difference corresponds to the so-called point-wise completeness,
whose additional property makes the two definitions equivalent. Completeness can be
checked by matrix-type N.S.C. due to Zwerkin (1971).

Many criteria give R™-controllability conditions (for instance, eqn. (38) is a con-
dition due to Weiss). The basic one uses the Kirillova-Churakova operators (9):

THEOREM 4.5. The single-delay system (10) is R™-controllable to the origin if 1*

n = rank[Py(0) By, P1(0)Bo, P1(1)Bo,
P5(0)Bo, P2(1)Bo, P2(2)Bo; -.., Pn_1(n — 1)Bo].

4.4. Controllability over rings. The following, pointwise notions are of alge-
braic type and are detailed in [82][129][118]: roughly speaking, strong controllability
implies the existence of a non-anticipative feedback control based on the past values
of the solution, i.e. x(t), z(t — 0), z(t — 29),... that one can say to be of “polynomial

14 This condition is also necessary if the system is pointwise complete.
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type”. Weak controllability just needs a “rational” feedback to exist, and the resulting
control law may be anticipative (thus, non realizable). A link between this form of
controllability and the subsystems description [114][142] is given in [118].

DEFINITION. System over ring (13) is controllable over the ring R [V] or “strongly
controllable”, if there exists a control law of polynomial type u(t) = f(z, vz, V3, ...),
allowing one to reach any element of the module R™[V] from any initial state zy €
R™[V]. It is controllable over the field R(V) or “weakly controllable”, if there exists
a control law of rational type u(t) = f(z, vz, V3x, ...,V 1z, v22,) allowing one to
reach any element of the module R™ [V] from any initial state o € R™ [V].

The following theorem (see a more complete version in [82]) uses the notations

(A/B) = [B,AB,A’B, ..., A" 'B],
and (A/ImB) for the controllability submodule associated with the pair (A, B), i.e.
(A/InB) =ImB + A?ImB+... + A" ' ImB.

THEOREM 4.6. The following, equivalent conditions are necessary and sufficient
for system (13) to be strongly controllable —i.e. over R[V]:

1) (A(V)/ImB(V)) = R"[V];

2) the Smith form of (A(V)/ImB(V)) is [Ixn | 0];

3) rank[s] — A(2) | B(2)] =n for all s and z in C.

THEOREM 4.7. The following, equivalent conditions are necessary and sufficient
for system (13) to be weakly controllable —i.e. over R(V):

1) rank(A(V)/B(V))=mn;

2) all the diagonal elements of the Smith form of (A(V)/ImB(V)) are nonzero;

3) rank[s] — A(2) | B(2)] =n for all s and at least one z in C.

In the first statement, condition 2) means that (A(V)/B(V)) is R, (V)-closed (see
footnote 3). In the second statement, it is not.

In the same framework of models over rings, the notion of controllability indices
has been extended to delay systems by Sename, Picard and Lafay [129][130][118],
giving interesting information about the smallest time ¢; that is needed for given
state variables (controllability submodules) to reach the expected value z; in R™.
This question is clearly illustrated by the very simple example [129] 21 (t) = u;(t),
Zg (t) = ug(t—h) where different, minimal delay times are needed for the control of z;
and . Then, each of these indices are represented by a class and an order in this class:
class reflects the minimal delay, whereas order corresponds to the classical notion for
systems without delay (i.e., the lengths of controllability chains). Controllability
submodules are also associated (see details in [118]).

4.5. A summary of the controllability notions.

4.5.1. Abridged notions. Functional properties

o Ma-strict controllability: 3 u, It1 — 4, = @1;

o My-approzimate controllability: 3 series uy,,It; — lim [z, ], = ¢1;

e absolute controllability (linear, input delays only): 3 u,u;, = 0 and z;, = @1;

e R™-functional controllability (linear, state delay only);

e spectral controllability (linear, commensurate): Ju, o(A4) = {A;}.
Pointwise properties (for linear, commensurate delay systems)

e R™-controllability: Ju,It; — x(t1) = z1;

e strong R™-controllability: Ju, ¥Vt — x(t1) = x1;

o R™-controllability to the origin: Ju,It; — x(t1) = 0.
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The question of the nature of control u(t)
o (strong) controllability over the ring R[V] : polynomial u(t) = K(V)xz(t);
o (weak) controllability over the field R(V): rational L(V)u(t) = K(V)z(t).

4.5.2. Order relations between the controllabilities. The survey paper [82] creates
the following implications (and other additional ones, using the notion of torsion
submodules):

THEOREM 4.8. In the case of a linear system with commensurate delays (8), the
following implications hold:

1) Strong controllability, over R[V] = Absolute controllability = Weak control-
lability, over R(V) = R™-controllability.

2)  Approzimate controllability = Spectral controllability = Weak controllability,
over R(V).

Note that it allows one to conclude that strong controllability is a very demanding
property: in fact, it means that the system can be controlled as if it were not including
any delay.

4.6. Remarks on the observability. The previous notions of controllability
(strong, weak, spectral,...) can be transposed to observability (see [118][121] and
references therein). Indexes and classes can be used for determining the minimum
time needed by an observer to construct the point z(t). General solution can be
obtained for retarded systems by means of realizations over R,(V) but, as far as
neutral systems are concerned, this problem of reconstruction is still open [118].

In the neutral case, the main problem is that, when trying to reconstruct the
instantaneous value of z(t), there is no asymptotic cancellation of the initial gap
function (difference between the system / plant and the observer / computer): this
yields a bias on the estimated vector z(t), except in the particular case of formally
stable systems'®. Besides, for any equation z(t) = n(V)y(t), where n(V) is a rational
fraction defined over R, (V), function 2(¢) is, in general, only defined modulo an initial
function ¢ on z. These (connected) reasons means that realization of asymptotic
observers (in open or closed loop) is “only” solved for formally stable systems.

5. Control. Since the Smith “posicast control” [133] and predictor [134][135],
control of delay systems has been widely considered. A great part of the practices
were based on approximation methods, which are not necessarily convenient when
significant uncertainties -including delay variations- are involved in the process. We
have previously mentioned some approaches in the subsection “Stabilization” but, of
course, the quasi-totality of the control methods received attempts at a generalization.
This section will provide a glance at some present trends.

5.1. Spectrum assignment. In the 70s, some papers emphasized the interest
of using distributed-delays controllers for discrete-delays plants [8][104][66]{99][98] (see
also [152] [154][10]): such operators, placed in the feedback loop, allow a reduction of
the spectrum o(A4) (39) to a finite set. Contrarily to the problem (initiated by Osipov
in 1965, see [98]) of shifting an arbitrary but finite number of eigenvalues, finite-
spectrum assignment does not require the preliminary knowledge of the spectrum
o(A); moreover, stability of the closed loop is easy to check, since the characteristic
function (22) becomes a polynomial. The following simple, scalar example [10] can

15As defined in Section 3.12, a linear system with rational fraction n(v) over Ry (V) is formally
stable if its denominator is asymptotically stable (in Schur-Cohn sense).
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illustrate the idea:

Y(s) e
U(s) s—1’

(42) Y1) =yt) +ult 1),
u(t) = — 169u - —2e v(t).
(t) = —2 /(; (t — 6)d6 — 2ey(t) + v(t)

Here, from (17), the control u(t) achieves a finite-spectrum assignment at s = —1
(note that the Laplace transform of the control u(t) (42) is L(u(t)) = U(s) = V(s) —
_12_683;2;1_3Y(s). A simulation result is given Figure 8: here, the distributed effect

was approximated by a discrete one:

0
1
1 1 1 1 1
/ Pu(t—6)do ~ D u(t) +detu(t — Z) +2e2u(t — 5) + defu(t — %) +etu(t — 1)] I
0

output

c
06 — - reference —— 1 06

S
0.4 0.4

closed loop
0.2 0.2
time
0 0 2 4 6 8 10 12 14 16 18 20 0 0 14 16 18 20
Figure 8: finite pole assignment (42). Figure 9: robustness test.

The following result was proven (necessity [98], sufficiency [153]):

THEOREM 5.1. The system (8) is finite-spectrum assignable if and only if it is
spectrally controllable.

Several algorithms followed, proposing calculation of the corresponding feedback
in the general case. A complete algebraic formalism was recently proposed [10][11][91],
based on the set of pseudo-polynomials £ (see previous section “Algebraic formalism”).
The sketch of solution is as follows: if the expected finite spectrum is defined by the
polynomial equation ¢(s) = 0, ¢ € R][s], if the process is described by Y (s)/U(s) =
p(s)/q(s), p,q € R[s,e™*], and if the control is to be calculated as U(s) = p.(s)/q.(s),
Pesqe € €, then the problem has a solution if qq. + pp. = ¢ has a solution. This
last condition holds because £ is a Bézout domain. On these bases, the robustness
aspects now remain to be studied: for instance, Figure 9 shows that for example 42,
the result remains interesting under parameter variations +20%. Besides, robustness
in relation to the sampling periods (time scaling of simulation, of output sampling
and /or of realization of the distributed effect by means of discrete delays) is also a
problem to be taken into consideration (changing the sampling period in simulations
of Figures 8-9 can destabilize the resulting behaviors. Other problems concern the
practical implementation of this kind of control: in [144], it is shown that an accurate
approximation of integral terms may lead to the instability of the closed-loop when
delay occurs in the input.
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5.2. Some other control aspects. Many control problems can be studied
by means of models over rings, then for the synthesis of discrete-delayed feedback
laws: disturbance decoupling [18] and block-decoupling [19], model matching [120], pre-
compensators design [119]. Some overview and results can be found in [118].

Concerning optimal control, many results and references can be found in [80] (also
considering stochastic FDEs). [44][30] considered some approaches by approximation
of infinite-dimensional Riccati equations, and additional results and references on
LQG control are given in [116].

Self-adjusting control with reference model (with identification problem) is consid-
ered in [80]. Hu-robustness results and references can be found in [145][38][154][109).
Feedback linearization of delay systems was considered in [43], and wvibrational control
in [87] [33]. Constrained control (with invariant or saturated control) was considered
in [26][110][33][52][62] [3], and deadbeat control of ODEs by means of delays can be
found in [154]. Finally, one can mention some trends in crone control (french abbrevi-
ation of “robust control with non-integer order of derivation”) [65] and sliding mode
control [94][39][24][54][53][126].

Specific control for nonlinear systems may be found in [146][147], [2]. Note that in
this last paper, the control objective is reached through the limitation of the amplitude
of a limit cycle which is done by adding a delay term in the control. The main tool
used in this approach is the study of Hopf bifurcation [61].

Of course, if control can be studied with some success in the case of unperturbed,
linear, time-invariant models, it is clear that, in more complex cases, the domain
remains wide open.

6. Conclusion. This overview of three aspects of delay systems -modelling, sta-
bility and controllability- makes appear four points of view:

1-  the functional point of view: FDEs and infinite-dimensional models, Lyapunov-ii
Krasovskii functionals for stability, functional and spectral controllability properties;

2- the pointwise point of view: models over rings, Lyapunov-Razumikhin func-
tions for stability, pointwise R™-controllability properties;

3- the approximative one: mainly based on classical, finite-dimension simplifica-
tions, followed by usual criteria for ordinary differential systems.

Only the first two approaches take into consideration the specific characters of
delay systems. Roughly speaking, the first class is the only one that allows nonlinear
behaviors to be considered.

In the author’s opinion, several interesting control methods can now to be applied
on concrete processes for which a linear model with constant, commensurate delays is
available. In the contrary case (nonlinear models, time-varying delays), the “toolbox”
is still reduced to stabilization results (with, as usual, some conservative properties).
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