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Abstract

This paper gives easily verifiable sufficient conditions of robust asymptotic stability of linear time-delay systems subject
to parametric unstructured or highly-structured perturbations. The criteria given in this paper are delay-independent or
delay-dependeni. The considered delay may be time-varying. An estimation of the transient behaviour of the studied
systems is alsc provided (exponential rate of convergence). .

Scalar or vectorial inequalities involving Hurwitz matrices, matrix measures and norms constitute the mathematical
foundations of the exposed results. © 1997 Elsevier Science B.V.

Keywords: Time-varying delay; Perturbations; Robust asymptotic stability; Comparison principle; M-matrix; Matrix
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1. Imtroduction

The stability of time-delay systems has been studied intensively during the past decades. In fact,
time-delays, due to transportation lags, finite calculation times, measurement times, etc., appear in numerous
industrial and natural processes, often leading to oscillations and sometimes instability. It is therefore
essential to study their effects on the responses of the systems, particularly when considering closed-loop
control.

Numerous works deal with the stability of time-delay systems [5, 8, 10]. Some criteria are directly
obtained from the characteristic equation [15, 19, 23, 24, 18], sometimes involving the determination of
eigenvalues or norms of matrices [[1, 13, 20]. Others involve the Lyapunov-Razumikhin theorem and Riccati
or Lyapunov equations [8, 10, 16]. Others deal with scalar conditions in terms of matrix measures and
norms [11, 14, 257, or matrix ones in terms of Hurwitz matrices [3, 7, 22].

The conditions given in this paper are of the last two types.

When studying the stability of an industrial process, it is almost always necessary to use a criterion which is
delay-dependent. Moreover, the stability property of a working point is really robust if it still holds when
perturbations make the model vary. In practice, the perturbed parameters include the delay. In spite of these
remarks, only a few papers [7, 17] give delay-dependent theorems valid for time-varying delays among those
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dealing with the stability of perturbed time-delay systems. Our aim is to improve these criteria and to break
away from some of the hypotheses of previous articles.
The systems which are in our interest can be written in the following form:

%(t) = Ax(t) + Bx(t — t(2)) + 1 (x(2), £) + glx(t — =(2)), t) for ¢ = 0 and x()eR", Y]

xo(f) = @(6) for fe{leR, A <0:3a>0/A=a— t(a)}, where ¢ is piecewise continuous.

The functions f and g are unknown and represent the perturbations, structured or not [11]. They satisfy
£(0,£) =0 and g(0, {) = 0 whatever t = 0. The delay (1) is piecewise continuous and verifies 0 < 7(t) < T
The existence and uniqueness of the solution of the problem (1) are assumed.

Our paper is organized as follows. The next section is concerned with the scalar criterion. The perturba-
tions considered arc unstructured. A condition of asymptotic stability is given, as well as a way to determine
an estimation of the transient response of the system. This critetion is compared with other criteria. Section
3 deals with a matrix criterion expressed in terms of M-matrices. The perturbations are this time highly
structured. The last section deals with an example of application of the different theorems.

Notations. The capital letters without indices represent matrices; the small ones represent either vectors or
scalars. | - | denotes the absolute value of a real.

If x is a vector, | x| denotes the vector whose components are the absolute values of the components of x.
SupPo <1 <alx(t — A)] is the vector whose ith entry i8 Supg<a<a [ (¢t — A)).

If A = (A;;), then | A| = (14;]), and A* = (4]}) with A% = Ay and Af, = |4l fori #j. || - | denotes any norm
in R” or its induced matrix norm. u(-) is the associated matrix measure, defined by

4) = fim LT+ RAl D) 4]

A matrix is said to be negative (respectively positive) if each of its elements is negative (resp. positive). The
vector inequality v < w has to be understood as n inequalities v; < w;.

A matrix A is said to be an M-matrix if its off-diagonal elements are nonpositive and if the real parts of its
eigenvalues are positive. If 4 is such a matrix, A(4) denotes the minimum real part of its eigenvalues. It can be
proved that 4(4) is positive and is an eigenvalue of 4. Moreover, if A is irreducible, an eigenvector associated
with this eigenvalue i(4) may be chosen with positive components. Several definitions, and properties
concerning M-matrices are given in [6, 9].

If y is a real, sgn(y) =1if y > O; sgn(y) = — L if y <0.

2. Unstructured perturbations (scalar criterion)

Let us decompose the matrix B in the following way: B = B’ + B". The system (1) is considered with
unstructured perturbations:

IfGe O <ellxll, gl < Blxl.

Theerem 1. If
WA+ B)+a+ B+ B +t(IBAIl+ BBl +eal B+ BB <0,

then the equilibrium O of the system (1) is asymptotically stable. F urthermore, the following inequality:
[x(®)] <Sup_, <ozs, XA e°®Ye ™ holds, whenever t 3 T,,, where o is the unique positive real solution of
the following equation:

¢+ (Cn(IBA| +aliB]) + B+ [ B )e™ + 1 (1 BBl + Bl B'[)e*™ + p(4 + B) + « =0. (2)

Proof. see Appendix A. O
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Remark. (1) One key point of this criterion is the decomposition of the matrix B into B = B’ -+ B", where B’
is chosen such that A 4 B’ is “more stable” than 4. Roughly, this decomposition corresponds to a decompo-
sition of the delayed terms into two groups: the stabilizing ones and the destabilizing ones. This technique
enables one to take the stabilizing effect of part of the delayed terms into account. The example given at the
end of this paper compares the results obtained by setting B' = B, B’ = 0 (no decomposition), with the results
obtained with a decomposition of B. Let us remark that a delay-independent criterion is obtained if B is
set to 0.

(2) A partial optimization of the decomposition is possible, but is not necessarily interesting: the
optimization is quite long, and moreover “natural” decompositions which lead to very interesting results are
easily found (see the first example). These natural decompositions are chosen such that 4 + B' is sufficiently
stable and || B”|| + (| B'A| + | B'B]| + ol B'|| + 8 B'|}) is not too big,

(3) As stated in the introduction, this criterion can be compared to several results found in the literature
[25, 17]. In addition to the preceding remark (1), comparisons may be made with other results: Wang et al.
[25] considered delay-dependent as well as delay-independent criteria, but did not allow the delay(s) to be
time-varying. Moreover, as || CD || < || C| || D || whatever the matrices C and D, our criterion is more precise.
Niculescu et al. [17] considered time-varying delays, and both delay-dependent and delay-independent
criteria. Theorem 1 is similar to the delay-dependent criterion they gave, but the domain of application of the
theorem proposed here is wider (no restriction on the derivative 1(t), no need to know t(0) for the
overvaluation of | x(£)||).

3. Highly structured perturbations (matrix criterion)

The perturbations on the system (1) are now highly structured

[fCe, Ol < Flx|, |g(x,8)] < G|x|, where F>0and G>0.

Theorem 2. If the real parts of the eigenvalues of the matrix M = (A+ By +|B'|+F + G+, BA|l +
|B'B| + |B'|(F + G)} are negative (or equivalently M is the opposite of an M-matrix), then the equilibrium 0 of
the system (1) is asymptotically stable.

Moreover, if M is irreducible, then |x(2)] < k-e™" fort = 1,,, as soon as |x(0)| < k-e~ 7, fe [— Tms Tl, where
k and y are determined as follows:
¢ Po=—(A+B) —F —[1,(BA| +|B|F) + |B"| + Gle"™ — 1,(IB'B| + | B'| G)e*"™.
® ) is the real positive solution of the equation A(P,) = y (see the notations Jor the definition of A(P,)).
® kis a positive eigenvector of P, associated with the eigenvalue P,

Proof. See Appendix B. The proofs of Theorems 1 and 2 are based on Lemma 1 (see Appendix C), which is
a generalization of a theorem given in [22]. [

Remark. The matrix criterion is more precise than the scalar criterion, because of the use of a comparison
system with the same dimension as the initial one. Moreover, the perturbations are modelled more
accurately.

It generalizes the delay-independent results published by Dambrine et al. [3]. It also improves the criteria
given in Goubet et al. [7]: in fact, as the matrix |CD| is always smaller than the matrix |C|+|D]|, the stability
criterion written here is more interesting, Moreover, this article provides estimates of the asymptotic rate of
convergence, which are not given in [7], and allows the delay and the initial function to be piecewise
continuous.

Theorem 2 enables the proof of the robust stability: the considered delay is time-varying and not
necessarily known. As for the uncertainties or perturbing terms, the bounds only are necessary for the proof
of the stability. Of course, the same remark could have been written after Theorem 1.



158 A Gouber-Bartholoméiis et al. [ Systems & Control Letters 31 (1997) 155-163
4. Examples

Two examples are considered in this section: the first one aims at comparing our tesults with the theorems
of the same kind [25, 17, 7] (formal comparisons have already been made below the two theorems). The
second one has already been studied in [16, 12] with other methods.

Example 1. Let us consider the following system:
dx
E(t) = Ax(t) + Bx(t — =(t)) + Gx(t — =(2)),

where

—12 0l —06 07 ) Dl
A=[—0_1 _1]= B=[_1 —0.8]’ Gx(z—f;(t))z[ﬁ(x(t 'E(t))(?)xi(t f(;))}

with | B(x(t — (), 9)| < 0.1 whatever the values of the parameters. 7, the initial function, and f are piecewise
continuous.

Our criteria, as well as the ones proved by other authors, have been applied to this system. The norm used
is the following one: | y|| = |y1| + |y2l. The associated matrix norm and measure are

| M| = Max{|M,| + |Mzy]; My, + 1Mz} u(M) = Max{M;, + |My,|; My, + M2}

The results obtained with the different theorems are given in Table 1 (the rates of convergence are given for
T = 0.1).

Let us remark that the last decomposition has been obtained with an optimization procedure which is not
detailed here. The example shows that the “natural” decomposition

B — 06 0 4 0 07
L 0 -—o08 -1 0
leads to very interesting results, and that an optimization is not necessary.

Example 2. The following system has been studied in [16,12]:
%(6) = Ax(f) + Bx(t — v()) + f(x(1), £) + glx(t — (&) 1)
with

=2 0 | @y cos(t) 0
A_[ 0 —1]’ f(x(t)’t)_[lo otzsin(t)]’

5= [ _é —ﬂ’ glx(t — (), 1) = [ﬁl cos(t) 0 :I

& B2 cos(t)

The upper bounds of the uncertainties are: |¢; | < 1.6;181] < 0.1; |z | <0.05;] 82| <0.3. The results of the two
publications are the following: 7,, < 0.1036 [16], 7., < 0.2013 [12]. Let us apply the theorems of this article
without any decomposition: B = B, B”" = 0.

The system can be shown to be asymptotically stable for any piecewise continuous delay 7(f) < 0.276. This
result is better than the ones given before for the same system. Moreover, the hypotheses on the delay are less
strong, We could even have considered elements of more general forms, for example a nonlinear parameter o,
such that |as (¢, x(£), x(t — T < 1.6 (instead of ay cos(t).

Remark. It is known that sufficient and necessary conditions of stability cannot be found for such uncertain
nonlinear systems. Our results reveal to be less restrictive than the previous ones, especially the matrix
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Table 1
Criteria Hypotheses Results
Wang et al. [25] Continuous initial function Stability if 1, < 0.125,

Niculescu et al. [17]

Goubet et al. [7]

Criteria of this article

7(t) constant

The initial function,

T and f§ are continuous
T is differentiable
0gi)sa<xl

The initial function,

¢ and § are continuous

The initial function,

T and f, are piecewise continuous

1% < Sup— <c vy {1 XN} 701

Stability for <, < 0.157

Exponential raie of convergence

o =0.20if & = O (z(t) = 7).

g =0.10if & = 0.5 and 7{0) = 0.05

Stability for t,, < 0.382 with the decomposition

B_ l: ~0.6 —0.06] + [ 0 0.76}

0.067 —0.8 —1.067 ¢

Scalar criterion: *without decomposition: t,, < 0.157,

*with the splitting-up

-06 0 0
B_{ 0 —0.3]+[—1
(O <Sup-.,, <o, {| x(O)] - %340 &7 03¢

Matrix criterion : *without decomposition: z,, < 0.260,

0'7j| tt, < 0.286,
0

*with the previous decomposition: =, < 0417,

1
[x()] < 0{1 1:|'e'°'55‘, with & such that

1%(8)] ga[lll]-e*°-559, fe[—0.1,0.1],

*with the decomposition

—06 —006 o 076
= : 429
B [ 0067 —08 } * [ —1067 0 :[ <0

conditions that are less restrictive than the scalar ones. This has been shown on the different examples that

have been studied.

Conclusions

The delay-dependent criteria given in this paper enable the study of processes with a piecewise-continuous
time-varying delay without any knowledge of this delay except its upper bound; the criteria are easily
checkable. They also allow for the estimation of the transient responses of the models, and can easily be
generalized to systems with several delays. The stability is considered with regard to unstructured or highly
structured perturbations, as classically defined in the robustness studies.

The results are extensions of several articles listed in this paper. One finding is the decomposition of the

delayed matrix.

Appendix A

Proof of Theorem 1. The equation of the system can be rewritten in the following way: whenever ¢ > 7,,

i) = (4 + B'yx(t) — B’f

t

t—z(#)

x(s)ds + B"x(t — (1)) + f(x(2), t) + g{x(t — =(¥), t).
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Replacing x(s) by its value Ax(s) + Bx(s — =(s)) + F(x(s), 8) + g{x{s — ©(s)), 5), it yields

£

x(s)ds — B’BJI x(s — t(s))ds

t—z(t}

t

#(6) = (4 + B)x(@) — B’AJ

t—z(t)

t t
o[ pat 9B | otxts el 90
t—lt) t—t(t)
+ B'x(t — t(8)) + f(x(8), ) + g(x{t — (1)), 2)- (A.1)
Let us evaluate the rate of change of the norm of x(¢): (right-hand derivative)

d* 00 _ i x@ + W= 1O _ o Lo o e — 1%L
t -0 h h-*O*h

Using the properties of the associated norms of vectors and matrices, the following inequality is obtained:

CIO ¢ i Lpjagy 4 nia + Brx01 - 50 + 1741 [ 1onas
t P h t—z(t)

t

(s — z(spll ds + || B J If(x(s), ) ds

t—(f)

t

; uB'an

t—1(t)

+ 1B f lg(x(s — t(s)), )| sk LB | I x(z — s@) | + 1@, Il + Nglx(t — (6, 2}

t—(t)
1
< { lim E[(III + A+ B)| - 1)1+ a} %@
r—0t

+ [ta(l BAY + | B o) + | B"}| + 8] Sup |x(t -4

0 AgT,

+ 1, (IBBl + |B'IB) Sup lx(t— A, whereisthe identity matrix.

0€A< 21,
As
lim %[(HI +h(A+ B — )] =pu(A+ B) (see [4]),
r=0t
d+
|Id>;(t) I < [(A + B) + o] | x(@®) | + [en(lBAl + | B &) + | B"l| + F] sllp Ix(t — Al
LA,

+ Tu(|B'BI + | B'B) Sup lx(t—A.

05420y,

Then the criterion immediately follows, using Lemma 1 (see Appendix C). As a solution of the differential
equation

420 _ L+ B+ o] 2) + Ton(IBAN + 1B 1)+ 1B + 1 Sup 2= 2)

dt 0gAgT,

+ Tul|BBl + | Bf) Sup z(t—4)

0€A<2r,

is ge~ ", where ¢ is given by (2), || x(f)|| < ae™ if the same inequality is valid for — 1, <t <1, [
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Appendix B

Proof of Theorem 2. The inequality (A.1) of Appendix A leads to

d dltx d (z) = Z (A + B )y, (1) sgn(xi(8)) — Z (B’A)ikf x,.(5) ds sgn(x;(1))
k=1 k=1 t—z(t)

n

- 3 BBy, f s = ) dssgnte)

- L0 Ao 9dsmem - 3 @) s =<6, 9dssemn0)

t—z(r)

+ 2 (B xult — ©()) sgr(1) + £i(x(2), £) sgn(x:()) + gi(x(t ~ ©(1)), ) sgn(x;(2)).
k=1
As x;(t) sgn(x:(f)) = |x;(t}] and as |sgn(x;(£))] = 1, an upperbound of (d™|x;1/d8) (1) is easily calculated (see the
valuations done in [3, 7] for more details):
d+ n
o< 3 A+ Bitinl+ o T 0B s D)
k=1 AT,

L]

+ % 2, (IB'Bl)a Sup |xift — )| + 1, Z (B'|F)u Sup |x:(t — A)|

- k=1 0 A<, k= 0sige,

n

+m 2 (BIG) Sup |t — 2)] + Z (B"Du Sup [x(t — 2)|

k=1 0<A<2s, b<i<a,
+ Y Palx)] + Y (G Sup |t = DI —
k=1 k=1 osi<t,
So
d* x|

§ O <[U+BY + Flix)]

+(@n(|IB'Al + |B'|' F) + [B"| + G) Sup |x(t — 4)| + 7,,(B'B| + | B'|G) Sup  |x(t — A)f.
O0gi<e, O A2y,

As the off-diagonal elements of (A + B')* + F and all elements of t w(IB'Al + [B'[-F) + |B"| + G and of
Twm{|B'B| + [B'|G) are nonnegative, Lemma 1 (see Appendix C) can be used; the theorem is proved. [

Appendix C. Comparison principle

The following lemma is a generalization of a comparison principle given in [22] to systems with two
delays:

Lemma C1. Let C, D, E be n x n matrices with real elements and let x(t) be a solution of the differential
inequality

MO —Cx()+D Sup x(t—A)+E Sup x(t—A) fort>0. (C.1)

Ogige bgidge
1 2
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IfD =0, E =0, if the off-diagonal elements of C are nonpositive, and if (C — D — E) is an M-matrix, then
a solution x(t) of this inequality is overvalued by the asymptotically stable solution z(t) of the differential
equation

i(y=—Cz(t)+ D Sup z(t—A+E Sup z(t— A forez=0 (C.2)

0sigr 0gigy

as soon as x(8) < z(0) for —Max(7(, ) £0<0.
Moreover, if (C — D — E) is an irreducible M-matrix, then there exist a constant y > 0 and a constant vector
k > 0 such that x(t) < ke™*, for t = 0. k and y are obtained in the following way:
® 7 is the positive real solution of the equation A(A,) =7, where A, = C — De™ — Ee™™
e k is a positive eigenvector of A, associated with the eigenvalue y.

Proof. (1) (the scheme of the proof is the same as in [22]). Let us consider the following inequality:

py>--Cy()+D Sup y(t—A)+E Sup ye—4)

0gisy 0<AST,
with y(8) > x(0), - Max(zy, 12) <0 <0.

Suppose there exist a time ¢ and an index i such that x:{t) = yi(t). Let us define t; = inf{t:x,(t) = y:(t) for
some i}. Then t; >0 and there exists an infeger j such that x;(t;) = y;(¢1), and x(£) < y() if t <1y The
following inequalities hold:

X)) < — Y, Cpxilt]) + > Dy Sup xilty — A+ Y Ey Sup xifty — A)
k=1 =

k=1 0glsn k=1 0gigty

< — ), Candts) + Y. Dy Sup yltc — A + Y Eux Sup nfty —4) < Jilts)
k=1 K

=1 osig k=1 C<AgTy

This is in contradiction with the fact that x(£) < y(£) if £ < t; and x;(t;) = y{t1). Thus y(f) > x(t), vVt 2 0.

Let us consider the equation 2,(t) = — Cz,{t) + DSupg<i<y, Zalt —A) + E SuPo < 1<, Znlt — A) + 74, With
the initial conditions z,{6) = z(f) + r, 7, > 0. Then z,(t) > x(t), V¢ = 0. Moreover, the solution of this
equation tends to the solution of (C.2) when the parameter 7, tends to 0. Thus, x(t) < z(t) as soon as
x{0) < z(6). —Max(1;, 7)) <8 <0

The asymptotic stability of the zero solution of (C.2) is easily proved using [22, 14] or [3] for example.

(2) (case of irreducibility of C — D — E). ke™™isa solution of the Eq. (C.2), if and only if y is an eigenvalue
of C — De”™ — Ee™ and k is an eigenvector associated with it.

Let us define A, = C — De®™ — Ee®™ = bl — P, (P, > 0), where b is the maximum value of the diagonal
elements of (C — D — E). Its eigenvalue with the minimum real part, M(A,), is equal to b — p(P,} where p(P,)
is the spectral radius of P, {the maximum eigenvalue, nonnegative in the case of a nonnegative matrix).

Considering the properties of M-matrices and of matrices with nonnegative entries (see [6, 9]), it can be
proved that
e As A, is an M-matrix, b > p(P), and so b > p(F,) for small values of o > 0. Thus, 4, is an M-matrix for

small values of ¢ > (;

@ A, is irreducible;

® MA,) 2 UAy) if 01 <023

e A(Ag) > 0;

@ A(4,) <O for large values of o.

So A{4,) = ¢ has a positive solution y.

As A, is an M-matrix, 4; ' > 0. As 4, is irreducible, an eigenvector k > 0 of A, associated with the
eigenvalue y may be found (see [6, p. 383, Theorem 2,10
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