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Abstract

This paper deals with the stability analysis of linear
functional differential equation (FDEs) of retarded
type, with both discrete and distributed delay. The
main tool used for solving such problem is based on
comparison principle : the behaviour of the solutions
of the initial system is compared, through some reg-
ular vector Lyapunov’s functions (RVLF), to the be-
haviour of the solution of some simpler FDE.

1 Introduction and statement of the problem

Stability and stabilization study is one of the major
problems encountered in control applications. For
functional differential equations, such study gener-
ally involves some Lyapunov functionals (Krasovski-
i's approach [12]) or functions (Razumikhin’s ap-
proach [15]}, but the way to gemerate them is of
course not clear.

An other approach based on a comparison princi-
ple has been proposed: it consists in studying a
simpler system, whose stability implies the stability
of the original system. This comparison approach
constitutes an alternative and a development to the
usual direct Lyapunov's method. It has been pre-
viously defined for ordinary differential equations
(ODE}[1][13][14], and then generalized to retarded
systems [2][9]. Recently, the same approach together
with the concept of degenerate Lyapunov function
(10][11] has been developped for neutral systems
[16][17][3]. However, up to now, it was not applied
to distributed delay systems.

The aim of this paper is then to complete this lack
and define a comparison principle for such systems,
that are often used as models for many processes
in biology, economic, environment, ecology, interac-
tions in population, ... { see for instance [4][5]{7][10]).

This presentation is, firstly, developped on the basis
of linear models with distributed delays, of type

’ K;(s8)x{t+s)ds,

—
(D
T, (8) = ¢(0),V0 € [—h,0], h = maz; ;{hi, s}, hiy 75

constant > 0, K;(s) is a matrix with continuous en-
tries,

.’E(t) = Aﬂ':(t)-l—i Biw(t—hi)—l-%
i=1 i=1

where z(t) € R denotes the instantaneous value of
the state function x; € C, C = C{[—h,0] , R" ) is the
set of all continuous functions mapping [—h,0] into
R™ with norm ||.||c defined by ||¢/||¢ = sup(||[¥(8}|] :
6 € [—h,0]) and ||.[| is a norm on R™; z; is defined
by V& € [—h,0],z:(8) = z(t + #). In the following,
z(t;to,¢) or z,(to, ) will denote the solution of (1)
with initial condition = (f) = ¢(6), V8 € [-h,0].

Secondly, we apply the obtained results to derive suf-
ficient stability conditions for some linear time in-
variant system with both discrete and distributed
delay. For these last models, necessary and sufficient
stability conditions have been defined [5][10], but in
practice they need complex computations that ex-
clude, for instance, the formal design of stabilizing
controllers. Note that, the usual comparison proce-
dure [2][16], can be generalized to nonlinear systems.

2 Background

2.1 Additional notations:
- For any x € R™ we consider a regular partition
of z into = = |21, .., %, ..,z-]° (regular means that

i1 T = 1),

V:R* — R, V(z) = [Vi(z1), -, Vi(®i), ., Velze)]”
is some candidate of Regular Vector Lyapunov Fune- .
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tion {RVLF), where V; is a scalar norm on R™.

According to the partition of =, A;; denotes a n; X n;
submatrix of any n X n matrix A parfionned into

Ain . A . Ay
A= A:il A/w -A-.ir
A . Au . A
The two r x r matrices V(A) and I'(A) are defined

as follows: V(A) = [V(A)y], V(A)u = Vi(A4y) and
V(A)y; = sup {BIESL 1 Vi(aj) # 0,6 # j;

I'(A) = T(A);), T(A)ii = v(4i) and T(A)y; =
V(A)i;

- %i(Ay) is the logarithmic norm [9] of a square
matrix A; with respect to the norm V; defined by
’ﬁ(Aﬁ) =lima_,o+ % [Vg, (I,;-l—AA.,;,,;) —].], I; is the iden-
dity matrix of order ;.

- A(A), sp(A) denotes respectively an eigenvalue and
the sets of all eigenvalues of A.

- o(A4) = sup{|A|, A € sp(A)}.
- Real(}\), is the real part of the complex number A.

- The notation z < y for vectors or A < B for ma-
irices are corresponding to inequality for each corre-

sponding entry.

- For a vector z,|2| means vector constituted by ab-
solute value of each corresponding entry of z.

Definition 1 {comparison principle) A dynamic
system (A) is said to be a Comparison System of
o dynamic system (B) with regard to the property
P (for example, stability of its zero solution), if the
verification of property P for system (A) implies the
samne property for system (B).

Definition 2 (overvaluing system) Consider the
system

2(t) = g(t,z(t),z;),t 2 to, (2)
z(t) € R", z€C(—h,0;R")
where g: R x R™ x C{[-h,0]; R") —— R".

The system (2) is said to be an overvaluing system
of (1) with respect to the RVLF V

if V(g(0)) < 2,(0),v8 & [-h,0] implies

V(iﬂ(t;to,&S)) < Z(t;to, zt0)1 Vi > 1.

Remark 1 Note that in the linear cases such an
overvaluing system constitutes a comparison system
with regard to (asymptotic) stability. Indeed, if

V(z(t;to;0)) < 2(tit0; 24, ), Vt 2> to, then any prop-
erty relative to stability verified by z(t;to; 2t,) s ver-
ified by z(t;t0; 8)-

3 Main results

In this section we give a way to compute an over-
valuing system for the FDE with distributed delay.

Lemma 1 Considering a RVLFV, the following in-
equality is verified along all solutions of (1).

D) < TAVE®)+ S VBV )
i=1

+Z f V(I (s))V (2(t + 8))ds. (3)

-
Proof: see a,ppendzz A
Lemma 2 Consider o RVLF V, and suppose that

the solution z(t;to,¥) of system (4) exists and is
unique:

Ht) = I‘(A)z(t)+21:V(B.;)z(t—h,;)+

j_ VEA)2(t+a)ds, (&)

t 2 tu,z:o(ﬂ) = 4(6), V0 € [-h,0].

Then (4) is & comparison system of (1) with regard
to {asymptotic} stobility.

Proof: see appendix B
Considering the fact that

x(t — hy) = z(t) - f,:_,%_ #(s)ds, (1) can be rewritten
as:

my ml 0
) = (A+ZBi)m(t)-ZBiAf_h_x(Hs)ds—

i=1 i=1
ZB Zka z(t + 5 — hy)ds —
i=1 k=1 hs
0
ZB Z/ ds K;(s +u)z(s + u)du
=1 —h —7
+ Z (s)a(t + 5)ds (5)



Consequentely, one can derive another form of com-
parison system (equivalent of (4)} for (1), based on
(8), whose delay is twice the original delay.The fol-
lowing theorem give different sufficient stability con-
ditions of zero solution of (1).

Theorem 3 The zero solution of (1) is asymptoti-
cally stable if one of the following conditions holds

a) Y(A) + 235 |1Bill + 3252
B DA+, V(B + 75 [, VI

opposite of a M-matriz;
¢) MA + FEB) 4+ T |Bidllh +
Zt—lllBllh)(E =1 || Bl

+ S B T3 S, ds [, 5o + Wl +
Zm” ||K (s)||ds <0,V t;

i’,..j 15 (s)llds < 0;

K;(s))ds is the

d) there exists a r-order vector u with positive com-
ponent and £ > 0 such that

[C(A + 335 Bl + > i V(B Ak +

(T V(Baha)( k—~1 V(Bk))
+ 23_1 V(B; E 1ft hy dsf V(K (8 + u))du +
oo f_,rj V(K;(s))dulu < —eu, V £.

Consider the set defined by :

Q={pecC:V() <}, A >0 scalar,u >0 a

r-order vector.

1) If condition b) holds and u is the eigenvector as-
sociated to the eigenvalue of

T(A) + X2 V(B + 372 2, V(E;(s))ds with
greatest real part then Q is a posztwely invariant set
of trajectories of (1). .

2) If u is the vector defined in condition d) then Q is
a pogitively invariant set of trajectories of (1).

Proof: see appendix C

4 Applications

4.1 Time invariant systems with discrete and
distributed delays

In this part we apply previous results to derive
sufficient stability conditions for some linear time-

invariant delay systems. Consider the following sys-
tern (6)

&(t) = Az(t +ZBm(t——h)+ZOf (s)ds,

t—7y
(6)
(6) can be rewritten as (7)

A+ZB a:(t)—ZBA[ w(t + u)du

i=1

—ZBaszf_ im(f-l—u—hk)d,u
‘ZBZBCf f 2(t + u + s)dsdu

—Ty

e / w(t + 8)ds 1)

=1 T

#(t) =

Then theorem 4 is a corollary of theorem 3.

Theorem 4 The zero solution of (6) is asympioti-
cally stable if one of the following four conditions is
satisfied

2) Y(A) + 325 Bl + 272
i) D(A) + X502 VI(B:) + 3252, V(Cy)7; is the oppo-

site of a M-mamas,

i) YA+ T Bi) + S0 |1 BiAl s +
(k21 {1 BRI D2 11 Bilia} +
i 1BillRs) 252 I Cslms) + 52
w) T(A+ 300 Bi) + Yooy V(BiA)hy +

(k21 V(BR) (3232 V(Bihs) +

(Cih V(B )52, V(Cy)m) + 2, V(Cy)rj s

the opposite of a M-matriz.

111Gl < 05

Gl < 0;

Example 1 Consider the system
£

&(t) = Az(t) + Ba(t —h} + C z(s)ds  (8)

t—7

withA:(_Oa' _Pa);B=(_b;)2 g?)and
C_ 5] 62)
T\ -a o

Let set b = /b3 + b2, c = \/c? +c2§ ; and then con-

sidering Hélder norm ||z|] = /=% + 23 , we have:

p- 3



YA+ B) = —a+b1;7(A) = —a; || BA|| = ab;||B|| =
hlICl=c.

Applying i) and iii) of theorem 4, it follows the two
sufficient conditions of asymptotic stability of zero
solution of (8).

)a>band 7 < a=b

2)a—b1>07<“;landh<ﬁ_l—_gﬁ

4.2 Time invariant systems with discrete de-
lays
Now let consider the following class of delay system.

(t) = iBz-m(t ) ke 20 9)
i=1

This system can be rewritten as (10)

a(t) = ZB Ye(t)-3 B, ZBf 2(t-+u—hy)du

i=1 =1
(10)
Applying previous results, theorem 5 follows,

Theorem 5 The zero solution of (9) is asymptot-
ically stable if one of the two following conditions
holds

8 ¥(0% B + (i || B; DL, | Bil ki) < 0

@) T2 Bi) + (5L V(B V(Bi)ks) is
the opposite of a M—matm

Example 2 Consider (11)

#(t) =B Y _a(t—hi) (11)

i=1

Applying theorem 5, it follows that, the zero solution
of (11} is asymptotically stable, if one of the two
following conditions holds

1) 0S¥ hi<— ”B“,

2} T(B)+ V(B)?Y_ir, h; is the opposite of a M-
matrix.

4.3 Time invariant systems with distributed
delays
Finally let us consider the equation of form (12)

t

(t)=C z(s)ds (12)

t—1

Considering the fact that z(s) = a(t) — [, #(u)du
and £(u) = C [ _z(v)dy, (12) becomes

&(t) = TC2(t) — C2 ftir ds f: du fu:_ z(v)dv (13)

Then it follows theorem 6.

Theorem 6 The zero solution of (12) is asymptot-
ically stable if one of the two following conditions
holds

i) o)+ <o,

ity TC)+ 1;V(C'z} is the opposite of o M-matriz.

5 Conclusion

This paper has provided some results for testing the
stability and condition of positively invariance of
some bounded subsets for some linear functional dif-
ferential equation of retarded type with distributed
delay. The given conditions depend on the size of
disiributed and / or discrete delays and are simple
to check. The inconvenient of these results is that
they are based on majoration: that explains why the
obtained conditions are sufficient, but not neccessary
in general. Note that our approach is still valid in the
nonlinear case if the nonlinear system can be over-
valued by a linear system.

Appendix A: proof of lemma 1

Let us define for any p € {1,2,...,r} as in [9] the
function ¢}, : B™ x R™ — R defined by

Qeloprs] = Jim [Vi(zp + Agp) ~ Vo(zp)] (14)
then we have [9]

D Vo(p(t)) = Qplwp(2), £(2)] (15)

D Vp(zp(t)) = Qplwp(t), Appzp(t) +

2;—1 Jkp A@kl‘P( ) + 3 Yoker Bima(t — hi) +
o D 1f K 5(8)przi(t + s}ds].

= lima_or [Vo(2p(t) + A(Appap(t) +

ZLJ Joip kw:o(t) + Zz—l kﬁ Biprczk(t - hi) +
) S L Kj(s)praw(t+ 8)ds)) — Vp(zp(2))]-
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Therefore we have:

DtVy(wp(t)) < lima_,o+ %[Vp(mp(t) + AAp, ()
Volzp(2))] +

V; (Zk Lk#p kak(t) + Ez—l k'— B"pkwk (t - h’)
+ 2 > e 1f K 3 (8)ppwr(t + 5)ds)

Remark that [9]:

Vo(App) = sup{Vp(2p(2)) ' Qplep(t), Appap ()], zp €
R"e,z, # 0}

and then
D+Vp(mp(t)) < Yo App) Vo lzp(2)) +

Vo (X ket kot kwk(t) 2200 Ykm Bipn it — ha)
+ 3 1f LK 5(8)pri(t + s)ds).

Considering properties of v, and V;, we obtain
DV (wp(t)) < 1o(App) Valzp(t)) +
Srern VAV (zk(1) +
T Xemt VI(Biy )V (@t — hi)) +
o1 2okt f_Tj V(E;(8)pk)V (xx(t + 5))ds

This holds for all p from 1 to r, and therefore the
final result is:

DY) < TAVE@)+ S VBV - b))

=1
+ Z V(K () V(x(t + 5))ds(16)
-7
Appendix B: proof of lemma 2
We shall proceed by contradiction. Suppose
V{#(0)) <(6),V 6 € [—h,0] and

Vix(t;to, ) < z(t;to, ),V £ > 1o does not hold.
Then it means that there exists an instant

t; = inf{t > #o, V;(:c(t;tg,qb)) > z,,;(t; to,'l,[)), §=1.r:
} and an index p € {1,2,..,r} such that

Vo(zp(tisto, ) = 2p(tijto,¥)
Ve(zeltisto, @) < zltasto, ), k#p (17)

and there exists € > 0 such that

Vo(zp(t1 + &520,9)) > 2(t1 + &%, %)
then according to (17) we have

L [Vo(@p(ts + €120, 4)) — Va(@p(tisto, )] > glawlts +
£ tO,II»b) _zp(tl;t0:¢)]3

and taking the limit as ¢ — 07 we obtain the in-
equality

(t tﬂ: ’l,b)

D*Vy(apltsste, d)) > (B2, (18)

But, from lemma 1, at the instant ¢; we have the
inequality

DV (ap(t1)) < vplApp)Valzp(t1)) +

S henn V(A Vizk(ta)) +
> Yokt V( B JV{ze(tn - h)) +
S e S vy V(0K (8)p) V(za(t1 + 5))

As all the off-diagonal entries of matrix I'(A) and all
entires of V(B;) and V(Kj;(s)) are non negative by
construction, relations (17) implies:

DHVp(ap(t1)) < vplApplValzp(t1)) +

Yk=1,6 V (Apk)V (2 (t1))+
T S V(szk)V(Zk(tl - h)) +
> k=1 f Vd:K; 5(8)pk)V (25(t1 + )

This means that

DH(apltsito, ) < (250 Py, g

which contradicts inequality {18).
Appendix C: proof of theorem 3

‘We only consider here the proof of the point d) ; the
other ones are similar. It is sufficient to prove that
zero solution of the comparison system (equivalent of
(4))}, derived on basis of equation {5), is asymptoti-
cally stable. Consider this system and suppose that
assumption d) holds. Then, consider the following
function v(=(t))

v(2(t)) = mazycicr{
For each ¢, there exists an index k such that
v(z(t)) = Ji’:f’)-l and

) < LPiA+ 3 Byl=(0)] +

= g



S V(BiA) [, |2t + 8)|ds +

YA V(B2 V(Bk)fh |2(t + s — hi)lds
+ S VBY LI fis, ds J2,, V(Kj(s+u))|z(s+
w)ldu + 372 [0, V(K; (S))IZ(HS)IdS}

Along the trajectories verifying |z;{t + s)| < |2;(t)]
for s € [—h,0], we have

L) < LA+ 5 B]|()] +
YT V(Bi4) 2,
Y V(B Y V(Bk)f b, 12(t)|ds +

i (B)E;n—z1 ft hi dsf_ V(K; (s+u))|z( )|du
o D _ry V{Ki(s)) ()|d81k

Then, according to definition of v{z(¢)},

) |z(t)|ds +

ﬁﬂm<lmm+z | B + £ V(BiA)hs
= S V(B S V(B +

Y V(B)Zj_l ke de V(K (s + w)ds +
Y I, V(K (S))dS)u]w(Z(t))

% < —ev(z(t)) (21)

This implies d—ﬂ’a(}(ﬂ < —ev(z()), so v(z(t)) is a
Lyapunov-Razumikhin [15] function, and the conclu-
sion follows.
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