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Abgstract

This paper considers the robust, stabilizing control of
time-delsy, linear systems with nonlinear uncertainties
on the parameters and possible variations of the delays.
It first gives some stability criteria for systems with
both distributed and discrete delays, and then applies
them to the design of input-delayed controllers. The
proofs are based on comparison methods.

1 Introduction

The aftereffect phenomenon is & natural component of
the dynamic processes in many engineering fields {see
for instance [4, 5]). BEven if the process itself does not
include delay phenomena in its inner dynamics, the
actuators, sensors and fransmission lines that are in-
volved in its automatic control usually infroduce such
time lags. This explains the great number of works de-
voted to the so-called functional differential equations
(shortly, FDEs) [L5]. '

Two generalizations of the Lyapunov direct method,
by Razumikhin and Krasovskii, are available for FDEs
and still receive a great interest {see {3|}; they either
involve the construction of a definite positive function
v{z(t)) (Razumikhin theory) or of a functional v(z,).
For robust stability criteria, the Krasovskii approach is
mainly chosen, using some generalized quadratic-type
functionals: this leads to Riccati-type eguations, which
in turn are to be studied by computational algorithms
such as LMIs (linear matrix inequalities) approach. In
the multi-delay case, the obtained LMIs have high di-
mensions (see for instance [3]). The distributed-delay
case was rarely considered through this approach [6}.

The comparison systems constitute another option: the
idea is to derive stability of original system by studying
stability of a simpler system, obtained by using differ-
ential inequalities and vector-Lyapunov functions (see
[7, 8] for the general theory and [L, 16) for concrete
choices of vector-Lyapunov functions with Razumikhin
principle). It has shown some advantages in basic sta~
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bility snalysis, but also for the estimation of the sta-
bility dornains (see [16] and references herein). The
results apply to the stability study of retarded systems
with discrete [1] or distributed delays (18] and to neu-
tral ones [19].

This paper applies this concept to the robust stabil-
ity and stabilization of uncertain, mixed discrete-plus-
distributed delay systems,

@(t) = Axz{t)+ Bzt —n({))
+F(2(8) + ot 2(t — 7(t))

+f0 [Cx{t + s) + h(s,z(t + &))]ds,
(t)

-7

t 2 ty, x,(8) =), e [-£0. 1)

Here, the delays n(t) (discrete) and 7(z) (distributed)
are piecewise continvous functions verifying: 0 <
n(t) < my, and 0 < 7{t) < Tm. A, B,C € R™" are
constant matrices, and the nonlinear functions f, g and
h are uncertainties which can be structured or not ([1},
see definitions in the additional notations).

In the existing literature {see a recent survey in [3]),
robustness is often considered with regard to model
uncertainties (13, 12, 11, 9, 1] or with regard to time-
delay [20, 1]. In what concerns this last, independent-
of-delay (i.0.d.) stability criteria and delay-dependent
(d.d.) ones are generally distinguished: i.o.d. stability
is a very strong property, since it holds for any value
of the delay, but needs restrictive conditions, Delay-
dependent conditions are generally preferable since, in
practice, delay upper-bounds are known.

But, to the best authors knowledge, there are no sim-
ple result that concern robust stability of distributed-
delay systems, even if this kind of operators is basic
in finite-spectrum assignment of linear, time-invariant
systems with constant delays [2](21]. Hence, we hope
the present study constitutes a possible approach to
the robustness analysis of such controllers: robustuness

with regard to variations of the delay, and with regard
to some additive, nonlinear uncertainties.

The paper is organized as follows: Section 2 defines
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robust, delay-dependent stability criteria. A theorem
and its corollary are proved for structured uncertain-
ties, and statements in the unstructured case follow
without proof. Then, Section 3 uses these results for
the stabilizing control of gystems with delayed state
and input. A simple example illustrates the method.

1.1 Additional notations

z(t) € R™, with norm ||.||, is the instantaneous value
of the state function z, € C = C([-£,0;R") , § =
max{7,,, Tm |, defined by: z,(#) = z{t+8) V8 € [-£,0);

|y} € BT and |M| € R} are the component-to-
component absolute values of ¥ € B* and M € R™*",

M?* denotes the matrix with same diagonal entries
as M € R™*™" but with off-diagonal absolute values
(Ml = mas, miy = [magl).

w(M) = limg o+ ”-l%ﬂl_—l, the matrix measure of M,
M

and {|M|| =sup T
y

Structured uncertainties [l]: omne can estimate
the component-by-component effect of perturbations.
Then,Vte R,V € R*:

f(t,z)] < F{)lz); F(&) e RT™,
g(t,2)] < G@)J=l; G(t) € R,
|h(s,z)| < H{s)|zl; H(s)e R}*™

Unstructured uncertainties: only a global estimation
of the influence of uncertainties can be obtained, and
then,Vie R,Vx & R*:

Wtz < of)llzll; oft) € Ry,
gz}l < B@E Y=l AE) € B,
Iags, 2}l < y(sYllell;  ¥(s) € Ry

2 Stability

Many results concern the case where the matrix 4 is
stable [9, 12, 14]; this restriction was partially solved by
considering the stabilizing influence of matrix B (3, 17].
This section completes it by including the stabilizing
influence of a distributed-delay effect {matrix C).

2.1 Strﬁctured uncertainties

Theorem 2.1 The zero solution of (1) is asymptoti-
cally stable if there are a wector p > 0 and a scalar
£ > 0 such that for t > to + &, M(t)p < —ep holds for
the matriz M{t) defined by

(A+B+7()C)"
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+F(t) +G(t) + 0 , )H(s)ds

+n(t)(.BAl+ |B))

+|B| f:(a) (F{t +u) + Gt +u))du

a
.HBoh[ 7t + u)du
—n{t)

0 0
+|B|f f H{(s)ds du
—n(E} o ~r(t+u)

+=8 0a +108)

+iC| /_Orm fso [F(E+u) + Gt +u)lduds

0 0
+|C2|f dsf Tt + u)du
) —(t) .

8

0 G 0 :
Hm/ /E/ H@)dvduds  (2)
—1(t) S5 o —7(i+u)

When all uncertainties have constant upper-bound
gains and delays are constant, the conditions of pre-
vious theorem become easier to check:

Corollary 2.2 If F', G, H,  and T are consiani, then
the zero solution of (1) is asymptotically stable if the
following, constant matriz M s of Hurwitz-type' :

(A+B+C+F+G+7H
+n{|BA| +|B%| + |B/{(F + @)} +
+n7(|BC| + |B| H)

+Z{10A] +(CBI + 0] (P+€))

+Z(|o?| 101 m) @

Proof: Firstly, note that

2]
) = s)- [ s-ruw (@

—(t)

x@+@==xm—/%ﬂ4mm. (5)

1Remark that this equivalently means that {3) Is the opposite
of an M-matrix, since it has positive off-diagonal entries: hence,
its stability can be simply checked by calculating the signs of its
principal minors,
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Thus (1) can be developed for ¢ > tq + £ into

&{t) = {A+B+T( )Cla(t)

+£ (&, =) +g(E, z(En()))+ f_m) h(s,z{t+s)]ds

— J2 o (BAZ(t+u) + B2a(trun(t+u)

+Bf(t—|—u z{t+u)) + Bg{a{t+u-n(t+u)))

+f () [BC:c(t+3)+Bh(s z(t+8})]ds)du

f—r(t) { f (CAzE4u)+C Bz (t+u-n{t+u))

+CF(t +ua(t+u) +Cola(t+un(t+u))

+ fET(Hu) [C22(t+v)+Chlv, z(t+v))|dv)du} ds.
g
By using the vector-Lyapunov function V(z(t)) (=)
N1 ()], - |z (Y, -y |2n{E)|]Y ) one can derive a compar-
ison system of (6) as in [1, 17, 18], leading to the result.

2.2 Unstructured uncertainties

Theorem 2.3 The zero solution of (1) is asymploti-
cally stable if there is an € > 0 such that

—£ > sup {M(A+B+T(t)0)+a()+ﬁ(t)

t>ig+

4 ] y(s) ds +n()) (I BA]| + | B%])

-1t

0
+J|B||/ () & 604 ) du

0
+1BC) f 7(t 4 ) du

+||B||f / 8) duds
{t) S -7 t-{-'u.)

+Z8 o)+ o)

P

+HCII/_T(Q/S [e(E + ) + B(E + u)] duds
0 0
+||02l|j;T(t)/; 7(t 4-u)duds

1] Q Q
+|lc] f f ] Y(w)dv duds}
) -ty Js J—7(i+u)

Corvollary 1 If e, 8, vy, n and 7 ore conslant, then
the zero solution of (1} is asymptotically stable if there
exists € > 0 such that

—& > pA+B+7C)+a+B+Ty+
n{IBAI + [|B*| -+ [iBli (. + )} +

72
mr(IBCI + Bl ) + - {ICAll + B

el @ B} + S + el ®
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2.3 Generalization to multiple delays
The previous results are generalizable to the multiple-
delay case. For instance, consider the following system,

Z/ [Oim(t +8) + hi(s,z{t +35))jds. (9

-y

with constant uncertainties bound, then it follows that

Theorem 2 The zero solution of (9) is asymplotically
stable if one of the following conditions holds:

1) the uncertainiies are structured end
- ) - TiT
Zl:ﬂoi + 3 (GG +Cil Hy) =+

1,§=1
r
-+ E Hirs
i=1

is Hurwitz; (10)

2)  the uncertainties are unstructured and

r r
0 > ,LL(Z’T,;C’,‘,)'FZ’Y{%‘F
=1

- - TZT
> e+ lcdy) 4

hi=1

(11)

Let us consider now the following system {0 < 73 < 71)

a(t) = f_ Gt ) 4 h(s,a(t+9))ds;  (12)

T1

it will allow one to design controllers as (19).Using

transformation (5} and putting p.= 3 (13~73) it follows
that:

Theorem 3 The zero solution of (12) is asymptoti-
cally stable if one of the following conditions holds:

1) the uncertainties are structured and

C* +p (|C?| +|C\ H) + H is Hurwitz (13)

2) the unceriainties are unstructured and if

p(O) +p(|C*| +iiCly) +ry<0. (14

Proof: Analogous to the previous ones but consider-
ing a supremum over the time interval [—71,—73|.
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3 Stabilization

Most of the existing literature concernlng the robust
stabilization of

&(t) = Ax(t) + Bt —n(t)) + F(,2(t)
+g(z(t ~ () + D(E)u(t) (15)

(where u(t) : R — RP, piecewise continuous is the con-
trol , D : B — R™? continuous), consider a memory-
less control w(t) = k{z(f)) [9, 11, 12, 14]. It means that
the parameter with crucial importance is the matrix A
which must be stabilizable (in the case D constant for
example): if the pair (A4, D) is not stabilizable, there
will be no answer for the stabilization problem, even if
the pair (4 + B, D) (which corresponds to the case of

- negligible delay) is stabilizable. Moreover, memoryless

control is not so much realistic in our opinion, since
in many cases the delay is infroduced by the meagure-
ment or control devices, leading to u(t) = k(z( — 7))
{10]. Then, the previous results appear as useful com-
plements for the robust stabilization of (15) by means
of a delayed control.” We will define, in the first time,
two delayed feedback laws and then, discuss the diffi-
culty encountered in designing each law in an example.

3.1 Discrete-delayed control
Let us firstly consider the following controller, applied
on system {15},

u(t) = K(t)z(t — 7()). (16)

where K(t) is piece-wise continuous, and 7(t) verifies
0 € 7(f) € Tn. The following result is a direct appli-
cation of {17, 18].

Proposition 4 The system (15) is robustly stabilized
by (16) if, for some scalar € > 0, one of the following
conditions holds for t >ty + &,

1) in the case of structured uncertainties, there is a
vector p > 0, such that M{t)p < —ep holds for the
matriz M(t) defined by
(A+ B+ D}K{))" + Ft) +G(t)+
n(@){|BA| + |B?| +1B| (F(t) + G(t))
+|BD@)K (8)]} +7(0){IDE) K (£)A]
+[DE)E )] (F(2) + G(E) + | DK () B
+ {(DOK®)2[} _ (17)
2) in the case of unstructured uncertainties,
WA+ B+ D@K(®)) + at) + ()
+n(E{IBA[ + 1B () + 5(1))
+ || B* + 1BDMHE @)
+ ({1 DEV K A) + 1DOE @) (o) + 5(8))
+|DEE@BI + [(DHEE)*|} < —e. (18)
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3.2 Distributed delayed control
Now consider the following control law, nvolving a
distributed-delay effect

— ()
ult) = [T(t) Kz(t + s)ds (19)

where T,, 2> T(£) > v(t} > 0¥¢, and K = constant. Ap-

plication of the results of Section 2 to system (15) with
the control law (19), yields the following proposition.

Proposition 5 The system (15) is robustly stabilized
by (19) if, for some scalar & > 0, one of the following
conditions holds for € > to + &,

1) in the case of structured uncertainties, there is o
vector p > 0, such that M()p < —ep holds for the
matriz M(t) defined by -

{A+ B+ [r(t) ~ v{t)] DR)K} + F{t) + G(5)
@ (Ba1+ (B2 +8) [ (R4
—n{z)

+G(t +u))du+ | BD() K| /_U o (T(t+u)

-wmm»m+g#m_ﬂmL
{ID)K A} + |DE)KB|} +

—u(t)
|D f Flt+u)+

—7(E}

t+u))duds—!—| (DK

| f e / (7 (b) v (t-40)) s ds; (20)

2) in the case of unstructured uncertainties,

e > p(A+B+(r(t) ~ vE)DOK) +
alt) +B(2) + n) {1 BA] + 1B] (ot

+8(0) + || B[} + IBDOK]| / »

(Tt + ) — v(t + u))du + 05[> (t)
-V ONIDE )KAH + D) KB}

+IDEK| ™ fa(t—ku

+5(t +u))dfu,ds+ (D)K.

/_Um ds /SD(T(HU) vt u))du

—7(t)
(21)

As before, if all parameters are supposed to be con-
stant, the conditions are simpler:
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Proposition 6 The system (15) with constant para-
meters m, D, is robustly stobilized by (18) with con-
stant 7, v, if one of the following conditions holds for
t> g+ &,

1) in the case of structured uncerteinties with con-
stant bounds,

(A+B+(r—v)DEK)'+ F 4G

+n {{BA| + |B| (F+G) + |B?| + |BDK] (T-/)}

5 (PP {IDEA| + |DE]| (F4G) +|DKBl}

+%(T—V)(T2—V2) {(DK)?| is Hurwitz; (22}

2)  in the case of unstructured uncertainiies with con-

stant bounds,

0 > p(A+B+ (rv)DE)+a+ G+
7{IIBAI + 1B (e + 8) + || B} +

|BDE(r) + S DE A +
\DEB|| + | DK]| (2 + )}
+1 (1) (29) || (DK (23)

3.3 Example

In what concerns the computational procedure, remark
that as there is no cross product in (18): then, one can
firet determine K and then, deduce 7 so0 to ensure that
(18} holds: this will be used in the following example.
Since we have not this opportunity for solving the in-
equalities (21)-(23), we can first fix one parameter (for
instance T — v/} and then, solve the inequality in K.

Consider the scalar example
&) = az(t)+belt—n(t) +d)ult), (24)
ldt)] < d, 0= n(E) <y,
Let us use (16) to stabilize (24}, with A =a, B'=1, ,
o= 8 = 0. then from (18) it follows that stabilization
is ensured for & < 0 and 7 verifying
0 > 7dlk|{d|k +a| + [b]] + (1~ 18| )k
+0+ 0+ 77, 10} (Jo] + [0}). (25)

Solution is given by

N < Bl
_atb+n, b (el + )
d(1l 0] 7m)
a+ b+, b (Jaf + [b]) + d{1 — 1, [b]) &
dik| (la| + |6} + d1&]) '
Now, using control (19) (with ¥ = 0 and T constant),
condition (21) yields

k<

<0,

0<7<—

0 > %nggk;g +7d{1 — |b] 7, - :;“(M + [+
o+ b+ 7, (8] (o} -+ B]).
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4 Conclusion

The problem of input-delayed, robust stabilization of
systems with aftereffect has been studied in both struc-
tured and unstructured cases, Original points are: 1)
the possibility for the process or control to involve dis-
tributed delays; 2) the consideration of possible uncer-
tainties on the (constant or varying) delays; 3) the rel-
ative simplicity of the conditions in the time-invariant
case. 4) the ability to study multiple-delay case (even if
we only studied here a special case (9) without discrete
delay).
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