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Abstract: This paper deals with the estimation of both stability domain and asymptotic behaviours of a
class of nonlinear neutral functional differential equations (FDE). The approach for solving such a complex
problem is based on comparison methods: the solutions of the original system are compared (by upper-
bounding) to the behaviours of some more simple ordinary differential equation (ODE). It is combined with the
use of regular vector Lyapunov's functions, that appear to yield less conservative results than usual scalar
norms or Lyapunov's functions. :

Keywords: asymptotic analysis, attractors, delay, differential equations, neutral systems, nonlinear systems,
stability, stability domains, time-delay.

Résumé: Ce travail concerne l'estimation & la fois des domaines de stabilité et des comportements
asymptotiques d'une classe d'équations différentielles fonctionnelles non-linéaires de type neutre. Il est montré
comment un probléme aussi complexe peut étre étudié & l'aide de méthodes de comparaison: les solutions du
systéme original sont comparées (par majoration) aux comportements d'un systéme d'équations différentielles
ordinaires plus simple & analyser. L'outil principal usilisé est les fonctions vectorielles de Lyapunov, gui
permettent d'obtenir des résultats moins conservatifs gue l'approche scalaire.

mots-cléfs: analyse asymptotique, attracteurs, domaine de stabilité, systémes neutres, systémes non linéaires,

stabilité, retards.

1. INTRODUCTION

Comparison principle for FDE is a general way of
analysing stability of complex time-delay systems
[8], that can be combined together with the concept
of vector Lyapunov's functions initially defined for
ODE (Bellman, 1962; Matrosov, 1962; Perruquetti ez
al, 1995). However, the general approach is often
difficult to apply. By using a more special class of
regular vector functions, many calculable results has
been obtained (Dambrine, 1994; Dambrine and
Richard, 1994; Goubet et al, 1996): but, they were
limited to retarded systems {possibly nonlinear and
with variable delay). On an other side, the case of
reutral systems was studied in (Kolmanovskii and
Nosov, 1979, 1986) by introducing the notion of

(scalar) degenerate Lyapunov's functions. Very
recently (Tchangani et al, 1996b), it was enlarged to
such vector functions. All these results allowed to
obtain sufficient stability conditions.

Besides, once an equilibrium is proved to be stable,
engineering practice also needs to know something
about its stability domain (for instance, in order to
characterize the size of perturbations that can be
rejected). Moreover, when the equilibrium is
possibly unstable, it is also interesting to have
informations about the boundedness (and size) of the
asymptotic behaviours. Such questions are generally
complex: in (Tchangani er al, 1996a), the authors
estimated the stability domain of the only zero
solution for some neutral systems, The present work



considers, in addition, the boundedness of the
asymtotic behaviours.

Let R* be the n-dimensional real vector space with a
norm | .4, and p the associated distance: p(x, y) =
Ix-yl. C = C(f-h, 0], R") is the set of all continuous
functions mapping [-h, 0] onto R® where h is a
positive constant (time delay). The norm I.Il of a
function ye Cis llyll = sup{iy(9)| : © [-h, 0]}.

The paper considers FDE of the following neutral
type:

%D(t, X, d(0) = F(L, x,, d(©)), t2 1y, xo=peC (1.1)

D(t, x,, d{t)) = x(t) - B(t, x,, d(t)).
It is assumed that the operator D € C(Rx CxR™, R?)
has a continuous time derivative satisfying (1.1) for
eachteR. F,Be CRxCxR™ R"); x(t) e R"
denotes the instantaneous value of the state function
x; € C defined by x(8) = x(t+6) ¥ ©  [-h, 0.
d(t} € D c R™ represents some disturbances,
It is assumed that (1.1} satisfies the conditions of
existence and uniqueness of the solution (see
(Hale,1977) for this theory).
x(t; tg, @) or X{ty, ) will denote the solution of (1.1)
with initial state function x5 = @.

Additional notations
- For any x € R" we consider a partition of x mto
T
xT= [xl, oXjo xr] where x; eR" such that 2( nj=n,
this partition is said to be regular.

-V:R"SR'@r<n)
V(x) = [Vi(x),..Vilx),.. V{x)]' is some candidate
of Regular Vector Lyapunov Function (RVLF),

) n
where V;is ascalarnormon R

According to the partition of x, a nxn matrix A is

A Ag o Ap
partionned into A= | Ay . Ay . Ap
Ar] . Ari ' Arr

and the two rxr matrices V(A) and T'(A) are defined
as follows :
V(A) = [V{A);] with

Vi Aux: '
V(A);= sup {%’EQ } (that is the norm of
x: V0 Vil
the matrix A with respect to the norms Vj and Vj),

I'(A) = [T(A)y] with 1“(A)u Vi(Aq) and

X;) _

T(A);: sy, VilAg) fori=j.

(A= xJV(E);eo{ Vit J
- Yi(A) is the logarithmic norm of the square matrlx A
with respect to the norm V.
- A(A), sp(A) denotes respectively an eigenvalue and
the sets of all eigenvalues of A.
- o(Ay=sup {IAl, A € sp(A)}.
- Real(h), is the real part of the complex number A.
- the notation x £y where x, y € R%¢ respecl. X > ¥)
means x; S y;for i=1 to s (respect. x;> y;) and ASB
(respect. A > B) where A and B are two sXs matrices

means A; < Bj;fori=ltosandj=1tos
(respect. Ajj > B ii)-

2. STABILITY ASSUMPTIONS DEFINITIONS
Some hypotheses on the structure of the functional F
in (1.1) are needed before establishing the main

results. In this part we consider that :
- either F explicitely depends on D

F(t, y, d(t)) = Fy(t, D{t, w d(t)), d(D),
t2tg, ye G, @2.1)

- or it can be decomposed as :
(t, w, d(1)) = Felt, D{t, ¥, (1), d©) + Fi (t, v, d(©),
t2ty, we C, (2.2)

and Fy is supposedto have continuous partial
derivative with respect to its second argument that is
denoted f.
It is also assumed that Fy, verifies Fy(t, 0, d(t)) =0.
The last assumption is that F| verifies
V{Fi(t, W, d(t) = N@OV(D(t, v, d(1))),

tztg,di)e D,ye Q cC (2.3)
where N(t) is a matrix with nonnegative coefficients
and £ is a bounded subset of C.

Definition 1 (Kolmanovskii and Nosov, 1979, 1986)
The solution x(y =0 of (1.1) is

a) stable if for any tyand any € > 0 we can find

8(ty, €) > 0 such that Ix(t;ty, )l < £ when t = tyif only
loll £ &(ty, €)

b} asymptotically stable if it is stable and in addition,
there is a set Cy < C, neighbourhood of O such that
I:lirn x(t;ty,p) =0 forall @ € Cy.

—oo

The set Cy is called the attraction domain of the
trivial solution.

The study of stability of the zero solution of (1.1) is
connected to some characteristics of the operator D
(Hale, 1977; Kolmanovskii and Nosov, 1979, 1986).
Here we consider the notion of f-stability of this
operator defined in (Kolmanovskii and Nosov, 1979,
1986} .

Consider the difference inequality

ID(t, yy dON <£(1), yo =@, 24
where f is a nonnegative scalar function and ¢ € C.
y{t; ty; ©) denotes the solution of the difference
inequality (2.4) with initial condition y = @.

Definition 2 (Kolmanovskii and Nosov, 1979, 1986)
The solution y(t) = 0 of the difference inequality
(2.4) is
a) f-stable if for any tyand any € > 0 there exists a
8(tg, €) > 0 such that ly(t;ty, @) < & for all t = ty under
all initial conditions and functions f such that

lipll < 8y, €), and :ts;lg fity<e

b) asymptotically f-stable if it is f-stable and, in
addition, limt y(t;te, @) = O for all @ in a subset of
—ea

C and for every function f such that f(t) 50 ast — e
¢) f-bounded if a bounded solution y(t;ty.¢)



corresponds to each bounded function f.
These notions are said to be uniform if & does not
depend on t;.

The main tool used in this paper is the comparison
principle (Dambrine, 1994; Lakshmikantham and
Leela, 1979) and the notion of degenerate
comparison system (Tchangani et al, 1996b).

Definition 3 (Tchangani et @/, 1996b): A dynamic
system (A) is said to be a Comparison System of a
dynamic system (B) with regard to (asymptotic)
stability, if the (asymptotic) stability of the zero
solution of (A) implies the (asymptotic) stability of
the zero solution of (B).

The well known Lyapunov's functions represent
some general distance functions between the
trajectories and an equilibrium. When these functions
are defined relatively to some operator of the state
function (the conditions of usual definition of the
distance are not verified), they are called degenerate
Lyapunov functions (Kolmanovskii and Nosov,
1979, 1986). The corresponding notion of degenerate
comparison system with respect to some degenerate
regular vector Lyapunov's function (DRVLF) was
defined in (Tchangani et al, 1996a, b):

Definition 4 (Tchangani ef al, 1996a, b) :
Let g(t,.) RxRf —» R' be a quasimonotone
nondecreasing function with regard to its second
argument, this is, verifying the usual ‘WaZewski
conditions (Perruquetti et af, 1995); then system
(2.5):
D¥y(t) = g(ty(®) Vt =15, Vy eRT (2.5)
is a Degenerate Comparison System (DCS) of (1.1)
with respect to the RVLF V and the set £, if the
following inequality is satisfied along every motion
of (1.1} :
DV(DC, x,, d(t))) < g(t, V(D(L, %, d(O))
Vizt,dit)e D, x,eQ (2.6)
where D7 represents the right upper Dini derivative
(Lakshmikantham and Leela, 1979). If Q = C, the
degenerate comparison system is said to be giobal.

It is shown (Kolmanovskii and Nosov, 1979, 1986)
that when (1.1) satisfies (2.1) and the operator D is {-
stable (asymptotically f-stable) then if the zero
solution of ordinary differential equation (ODE)
(2.7) is stable (asymptotically stable) then the zero
solution of (1.1} is stable (asymptotically stable)

y = Fy(Ly(t), d(e) 2.7

The following results give some conditions of
stability and a way of obtaining some estimation of
the stability domains for some FDE of neutral type
satisfying the conditions (2.1) or (2.2).

Theorem 1: Suppose the following conditions are
satisfied :

1) the operator D is f-stable {(asymp. f-stable} ;

2) there is a subset Q of C and a matrix My(t) such
that

T(fy(t, DL, v, d(1)), d(6))) < Myf(t),

t2ty, dt) e D, x€ (2.8)
then the ODE
z=M(b)z(t) (2.9)

(where M(t) represents Mg(t) in case of a
decomposition (2.1) or Mp()+N(t) if (2.2) holds)
is a local comparison system of {1.1)-(2.1) or (1.1}
(2.2)-(2.3) with regard to (asymptotic) stability with
respect to RVLF V and the subset O ; the
comparison system is said to be global if 2 =C.
Moreover, if there exists € > 0 and a positive
constant vector u such that

M(Du < -gu
then the set 3(u) defined by
S = {oe C, V(i ¢, di) SAuy © @ (2.11)
where A is a positive number the greatest possible, is
a positively invariant estimation of the asymptotic
stability domain of the zero solution of (1.1)-(2.1) or
(1.1)-(2.2)-(2.3).
Proof :
point i) It is shown (Tchangani er af, 1996b) that
(2.9)is a DCS of (1.1} s0
VDL, x,(to, ), A1) < z(5; to, V(D(to, @, d(tp))))
where x,(tp, @) is the solution of {1.1) with initial
condition ¢ and z(t; ty, V(D(ty. ¢))) the solution of
(2.9) with initial condition V(D{t, @)) ;
remark that since the different norms of a finite-
dimensional space are equivalent, there are constants
¢; such that
ID(t, x{ty, @), d(D))I <

r
_ZlcjvJ(D(t, Xillo, @), d(O)) <
J:

(2.10)

r
2 cizfti to, V(D(to, 9, d(to))))
=1
and as the operator D is f-stable (asymptotically f-
stable), conclusion i) yields.
point ii) : Suppose ¢ € 3(u) ; let us proceed by
contradiction, and suppose that x,(ty,¢) (the solution
of (1.1) with x,, = ©) does not remain in 3(u). Then
let t; = inf [t = t5 : V(D(, x{tg, 9), d(t))} > Au}.
According to the definition of t;, there is an integer
ke {1,2,..,r} such that
Vi(D(t;, 21 (tp, 9, d(11))} = Auy and
Vi(D(t;, % (o, @), d(t))) SAuy, j=k (2.12)
since, at least one component (k) of x,;{tg,¢) reaches
the boundary of S(u) at t;), and there exists At > 0
such that
Vi (D(t, x,(tp, @), d(£)) > Ay fort e (t;,t+AL) (2.13)
But, from (2.12) and (2.9}
D+Vk(D(t1’ xt](t(]!(?)a d(tl))) <
Mty ha Vi(D(t 1, % (to, ), d(t))) +
Z M(t )4 V{D(t;, Xtp.9), d(t;)
Jjek
As M(t)y 2 0, according to (2.12), we obtain
DHV(D(ty, xey (to,9), d(ty)) <
r

MLt ghuy +J; Mty = AM(t ol <0 (2.15)

(2.14)



sogg [ViD(t;, % to,®), dt)] < -eue < O, which

means that the function t =V, (D(t, x,(t5,0), d{(t}}) is
strictly decreasing on a neighbourhood of t; and so
the inequality (2.13) cannot hold when (2.12) is
satisfied. This proves that x{tp, @) remains in 3(u).

corollary (Tchangani et af, 1996a) @

i) If M(t) is a Hurwitz constant matrix, then it is the
opposite of an M-matrix (Dambrine, 1994), and a
possible positive constant vector u is an importance
eigenvector (this is the eigenvector associated with
the eigenvalue of highest real part).

ii} If all the nonconstant coefficients of M(t) are
located in a unique colunm or in a unique row and
there exists £ > 0 such that M(t} + €l is Hurwitz at
any time, then a possible positive constant vector u is
the importance eigenvector of M(t) + €I, (Dambrine,
1994),

A procedure in three points can be given for
investigating the problem of estimation of a positive
invariant asymptotic stability domain for the zero
solution of (1.1) with condition (2.1) or (2.2)-(2.3).
1) choose a RVLE V and find a subset £ of C such
that (1.1) admits a DCS relative to Q and V
(computation of M(1)) ;

2) test the stability condition of DCS and if it is
positive, calculate a vector u such that M(t)u < 0;
3)8() ={¢pe C, V(D ¢, d(to)} <Au} ¢ Q.

3. ASYMPTOTIC BEHAVIOUR STUDY

In this section, we assume that F satisfies the
decomposition (2.2) recalled below :
Et, v, d(t) =
Fo(t, D(t, y d(0), AP+ (L, w, d(®)) (3.1)

with the same conditions on Fyas in section 2 and F,
verifies the following condition :

V(E (W v, d)) <q, (3.2)

Ytz dit)e D,yeQcC
where q is a vector with positive components and the
operator D verifies:
sup V(B ¥ d(1) <
t2tp,d{De D

BoV(w(0)} + By V(y(-h)), V yeQ  (3.3)
where Bgand B are rxr constant matrices with
nonnegative coefficients.
In this case, it is not possible to derive a stability
condition for the zero solution by applying the
previous results, but it is possible to estimate
behaviours such as limit-cycles. Let A be a subset of
R and define C(A) by

CA)={pe C: @p(B) e Afor6e [-h 0])

Definition 5 : A subset C(A) of C is said to be an

attractor of (1.1} if any solution x(t; ty,@) of (1.1}

converges asymptotically towards A that is

t!j_)m p{x(tt,@), Ay = 0 for any ¢ € Cgz where

plx(tilg.@), A) = inf Ix(tity,@)-yl ; the set Cyis
ye A

called the domain of attraction of C(A).

Theorem 2 : Assume the following conditions :
1) there exists M;, opposite of a M-matrix, such that
T(fo(t, Dt x, d(1)), d(0)) S M,
t2t, dity e D, e ©; (3.4)
2) the operator D satisfies (3.3) ;
3) By + By has all its eigenvalues inside the unit

circle.
Consider

-1
Ag={ye R":V(y)< - (- By-ByM;q} (3.5)
then C(A, ) is a stable attractor of (1.1)-(2.2)-(3.2)-
(3.3) and for any vector u with positive constant
coefficients satisfying the following conditions
auzq 3.6)
b)Mu<0 (3.7)
)3 ={¢e C, (D ¢, d(tp))) Sut g Q
the set 8 (u) is an estimation of its positively
invariant domain of attraction.

Proof : Tt is known (Tchangani ef al, 1996b) that the
nonhomogeneous systems (3.8)

Z() =M, z(t) + q (3.8)
is such that
VD(t, x,(tp. 9}, A1) < 2(t; to. V(D(ty, ¢, d{te)))),
t 2 tg ; considering the definition of operator D we
obtain
V(x(t; to, 9)} s VB(L %, At
z(t; to, V(D(to, @, d(to))}) t 21
and applying (3.3) we obtain:
V(x(t; to, ) < BoV(x(t; to, 9)) + By V(x(t-h; to, ¢))+
2(t; to, V(D(tg, @, d(tp)))), t 2 o (3.9
notice that z(t; ty, V(D(tg, @, d(tg)})} is given by
z{t; to, V(D(to, @, d(tg)))) =
explM; (1) V(D(tg, ©, d(to))) + M'q) - Mi'q
and as M, is the opposite of a M-matrix,
7{; ty, V(D{ty, @, d(tp)))) converges asymptotically
towards - M]lq ; so from (3.9) we deduce
lim VG5 to, 9))  Bylim V(X t, 6))

+B, lim Vx(th t, 9)) - M} 'g (3.10)
t—eoo

and so: (1, Bo- By) lim VIx(t: to, ) 5- M'q
—300

According to condition 3), the matrix (I, - Bp- By) is
a M-matrix and so (I, - By - 131)“1 exists and has all
its coefficients nonnegative ; it follows:
Jim VOt o, 0)) < - (- Bo- B 'My'g,

which means that x,(ty, ¢) converges asymptofically
towards C(Ag) ; its stability comes obsviously from

the stability of the the equilibrium - M—IIq of (3.8);

this implies the firts part of conclusion. Now, it leave
to show that 3(u) is positively invariant for (1.1} ;
this can be done in adapting the proof of point ii} of
theorem 1.

In order to illustrate these results we consider two
examples.



4. EXAMPLES

Example 1: Let consider the system

% _ '3+f1 (t’ Xp d(t)) fZ(t1 Xy d(t))
( 3t %, d(©))  -4+fa(t, X, d(t))) t

dt ~
gl([’ Kb d(t))
(g’l(t: X5 d(t))
Fi ]
D= () - ( o )x(t—h), 2t x=0 (@41

with x(t) = [x; (1), x,()] Te R2

Hypotheses
Forall tzty d(t) e D, x,e C
i, x, SO <1, (4.2)
lg;(t, x,. AN = o (D) Ixo (L), 4.3
Iyl <1 (4.4)
This last condition guarantees the f-stability of
operator D.

This system is not exactly in form (2.2) but let us
denote

Fyt, %, d(0)= (

and

3+£1(t, xp, A(tY) Bt X, A1)
f3(t, Xi» d(t)) '4+f4(t1 X d(t))) '

gl(ts X d(t))
Fl(t, Kis d(t))=
[gz(t, X d(t)))

By using the RVLE V(x) = [Ix,], Ix,/]T, it yields

<

lg](ts X d(t))l
V{F(t, x)) = ( J

IgZ(t’ Ap d(t))l
ou{t)xz(0l 0 oy(t)
[ ]( )«Dxa @
(Bl () 0 oM
0 o4 {t)
80 (2.3) is satisfied with N(t) = ( j
0 Oip(t)
The matrix Mg(t) is obtained by establishing the
differential inequality (Tchangani et al, 1996b):

D+V(Dxt) < V(F] (t’ Xt)) +
( 3+ (L x, (D)t X, AN

)V(Dx,) (4.6)
[£3(t, %, d(t)| -d4+E4(1, x,, d(1))

Considering (4.2) we obtain

21
D+V(Dxt),<_( 1 3)\/(ng+N(t)V(ng

21
so M, () :( .

the DCS of the system (4.1) are for 2 =C:

) and at last, the parameters of

-2 14 oy(t)
] 4.7)

M(t) = Mo(t) + N(t) =
1 -3+ ap(t)
As all the nonconstant coefficients of M(t) are

located in a unique column, the stability condition of
(4.1) is that M(t) is Hurwitz, i.e :

O<on)<5
o (D+20(t) < 5

cy(t) >0
{ for any time. 4.8)

Example of a positively invariant asymptotic
stability domain estimation

For sake of simplicity, we consider the case
oty =) =1

-2 2
then M =
1 -2

The importance eigenvalue of M is 2+V2 and an
eigenvector associated with it is [\E . l}T, s0 the set
Sw={oe C: VD) <AN2, 11T} 4.9)

is a positively invariant estimation of the asymptotic
stability domain of zero solution of (4.1).

Example 2

We consider one more time system (4.1), but now we
suppose that the operator D is defined by :
D(t, x,, d(t}) = x(t) - B(t, x,, (L)), (4.10)
with B(t, %, d(t)) = [by(t, %, d(1)); balt, x¢, d()]T
where the functionals b, and b, verify :
by (t, W, d(O) < P11y O + Bralw2(0)l +
Y110y )+ a2y (-l
Iba(t, W, A < Parhy1 (O + Bazly2(0) +
Y21y 1 (-h)l + yaoiya (-h)h))
fortz1y,d(f)e D,ye QcC. (4.11)

Here we assume that following conditions are
satisfied fort 2 ¢, d(h e D, x,e Q cC
Ifit, x, d(EHI =1,

lgi(t, x, A S 0;(t) (with O < ou(t) < 1)

(4.12)
(4.13)

In this case, the parameters of the nonhomogeneous
DCS are :

-2 1 1 -1 4/5 )
Ml—(l —3)q=(1)"M1q: 35 )
it is obsvious that M is the opposite of an M-matrix

.o . .5
and its importance eigenvalue is 5 + 5 and one

1+\E

2

eigenvector associated with it is | 1%

Brityin Biatmia )

BO + B =(
Bai+¥ar Bao+yn

For simplicity, we suppose Bz =Yi2=Ba1 =¥ =0



then conditions 3) of theorem 2 are equivalent to:
{ 0<Pu+m<l

0= By + <1

and
4
_ 5(1-By4-
—(IZ-BU—BI)'1M1lq= ( 13;1 Y11)
5(1-Bara)
So, the set

—— M —-54-""_'___
ClAg (yh = {‘l’ € Q: ly,(0) S5(1-1311'1’11) and

3
@) €0 ———,-h<8<0
V2(0) 5(1-Bp-van) }
is an attractor of (4.1) - (4.10) and the biggest set

3= {‘P € C 1y (to)-1101 (tg-h)-Y2atp-h)E < 7“1+2\f5"

lpa(tol < 7\.} included in Q is a positively invariant
estimation of its domain of attraction.

5. CONCLUSION

This paper has provided two main results for
estimating the behaviours of some nonlinear time-
varying perturbed FDE of neutral type. The given
conditions are independent-of-delay ones, and seem
to be the first attempt to provide an easy-to-check
procedure for the estimation of attractors. In what
concerns the stability domains estimation, the
method is rather classical in its principle, but the
original point is that the results are directly workable.
The inconvenient of these results is that the
comparison system has to be of ODE type: thus, the
considered neutral systems must have some
restrictive characteristics, that correspond to
assumption (2.3). This will be relaxed in further
work by using a retarded-type (FDE) comparison
systern.
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