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ABSTRACT

This article is devoted to the robust stability analy-
sis of large-scale systems involving both discrete
and distributed delays. Here, the robustness prop-
erty is relative to uncertainties on the time-delay
function as well as on model parameters. Differ-
ential inequalities and comparison principle lead
to consider a simpler system, which stability im-
plies the stability of original one. An application
to Hopfield’s neural networks illustrates the work.
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1 INTRODUCTION

The major part of the engineering systems in-
volve several interconnected subsystems, possibly
coming from different physical domains. Exam-
ples of such composite, large scale or intercon-
nected systems are classically encountered in the
control of electric power networks, nuclear reac-
tors, aerospace industries, chemical and petroleum
plants,.. but also in other sciences such as economy
(interaction between sectors of economy (Leontief,
et al, 1953)), life sciences, societal or ecological sys-
tems (see (Michel and Miller, 1977) and references
therein for more details).

Besides, systems with aftereffect are also in-
volved in engineering: such models permit one to
take into account the phenomena of memory and
material, energy or information transmission (Kol-
manovskil and Myshkis, 1992; Kolmanovskii and
Nosov, 1986; Hale, 1977): this kind of phenom-
ena has a great influence on the behavior of inter-
connected systems, in particular when considering
the stability property which is known to be one of

the major questions encountered in control appli-
cations.

Such stability study generally involves some
Lyapunov functions in the ordinary differential
equations (ODE) case, and functional (Krasovski-
i’s approach Krasovskii, 1963) or functions (Razu-
mikhin’s approach, Razumikhin, 1960} in the func-
tional differential equations (FDE) case.” But the
way to generate them is of course not cbvicus.

The other approach we use in this paper is based
on differential inequalities and comparison princi
ples: it consists in studying a simpler comparison
system, which stability implies the stability of the
original system. It has been widely considered in
stability analysis of ODE (see for instance Lak-
shmikantham and Leela, 1969; Perruquetti ef al,
1995), and then generalized to retarded systems
(see Barholoméiis, 1996; Richard et ol, 1997) and
neutral systems (Tchangani et al, 1997).

Here, this concept will allow us to derive suf-
ficient robust stability conditions for some time-
delayed large-scale systems. In the literature, ro-
bustness is often considered with regard to rmodel
uncertainties (Niculescu et af, 1994; Michel and
Wang, 1995) or with regard to time-delay (Richard
et al, 1997; Verriest, 1994). In what concerns
this last, some compromise has to be found: it is
worth deriving independent-of-delay (i.o.d.) sta-
bility, which is a very delay-robust property but
needs very conservative conditions; besides, delay-
dependent (d.d.) stability yields more “realistic”
conditions but needs some known bounds of the
delay variations. In particular, d.d. stability is the
only property that can be checked for non-delayed
unstable open-loop process with a purely delayed
feedback control. Then, the present paper consid-
ers robustness with regard to both parameters and
delays: it provides both d.d. and i.o.d. results.

Let z;(t) € R™, with norm |[.]|; be the



current value of the state function =z; €
C; = C{[—h,0]; R™) of subsystem i defined by:
2,(0) = z(t + 6)v8 € [-h0], and &z =
], ..z, .., 27T, C = [I;=, Ci ; we consider here

uncertain time-delay systems of the form,

Zi(t) = Awi(t) + Aaift, =) +

Bim,,;(t - h(t, :L‘t)) + Abi(t, SC;) -+

0
j [Cizs(t + 8) + Aci(s, 2:(s))]ds,
—7{t,x;)
(1)

t>tg, 0= 1,..,7, @, (6) = p(8) VO € [-h,0],
where

e h(t,x;) and 7(t,x;) are piecewise continuous
functional verifying: 0 < h(¢, @) < b, 0 <
T(t,xt) € Ty b = max{hm, T };

e A; B;, C; are constant, n; X n; matrices;

(Aai(t}mi): Abi (t: mt)a

e the uncertainties

Aci(s, 24(s))) verify

Aai(t, ze) = 305 Asi(t, 24)25(2),

Abilt, @) = S5y Biglt, st — hit, 20)),
Aci(s, z4(s)) = iy Cig(s, xe(8))zs(t + 9);
with conditions, ¥V z; € C:

[4s (s (8)]s < i (25815

1Big (- )zi (¢ — RNl < Big(Nlzs (¢ — RN
1G5 (st + 8}[s < vi5 ()l (& + s);

Let us define following sets:

. Q,,(q,,) = {EW € R™ : ”m’ﬂll‘fo = qé}aq%' >0 y &
(-centered ball of R™ with radius g¢;;

o C((q:)) = {ps € Ci: pi(f) € Ulg),0 €
[—h,O]};

* Ue) = Tl () and CQg) =
[Timy Cula)) g = a1, @i &5

w(X) is the matrix measure of the matrix X
{Bartholoméils, 1996) associated with the norm

|11

.| +ex| -1
X)= Hm TN
#(X) Jim, -

2 MAIN RESULTS

This section is divided in two parts: the first one
defines the main tool used for stability analysis
and gives independent of discrete delay stability
criteria for system (1); in the second subsection,
a model transformation is used so to take into ac-
count the influence of the discrete delay value on
the stability.

2.1 INDEPENDENT-OF-DISCRETE-
DELAY CONDITIONS
Let us set:

. F(t,ﬂ’:t) = [F-,;j] with Fy; = ,u.i(Aé) +0!:,;5(t, .f(’:g)
“and Fjj = ag(t, @), § # 4
. G(t,m;) = [G,;j} with Gy = IlBOi“i + ,Bq:i(t, zt)
and Gij = ﬁij(t:mt)} J 7é i
o H{s,zi(s)) = [Hy) with Hy = |Gl +
vii(s, z:(8)) and vi;(s, ze(s)), § # 4
o |z = [liza @)1 s [12:@llss s BT

then the following lemma holds.

Lemma 2.1 The following inequality is satisfied
along any solution of (1):

DY) < F(t,z)llz@®) + {2)
G(t, 2 )l [2(t — R, 22))|

0
* /—r(t,mg H(s, m(s)) (2 + S)“ds.

(DT is the Dini derivative).
Proof. The proof is based on results in
(Tchangani et al, 1997a). Let us consider for any
i € {1,2,..,r} as in (Kolmanovskii, 1995), the
function ); : R™ x R™ — R defined by

Qibro, i = Jim < (o= Auil ~ [l (3)

then we have Dt ||z;(2)]|; = Qilzi(t), :(t)]. Re-
placing #;(t) by its value in (1) and developing,
yields the inequality

DY lz@), < Qilai(t), Asi(t)] +

S a3 ||z @) +
g=1
[|B|i||z:(t — R(t, z:))]1 +

> Bt wllzs (t — At )l +

J=1

0
[ tiGdete + 9l +

—Ti{t, 2,

S (8, e8|y (¢ + 8)l 1.
J=1

Doing this for all i = 1,2,...,r and remarking that
ti{Ai) = 8P, 0 |27 Qs[2:, Aizi] completes the

proof.



Now, let us associate to the inequality (2) the
following system,

#t) = F(t,m)2(t) + G{t, x)z(t — h(t, ) +

0
/ o, Hometr s, @

z(t) € R" ; then one can derive the following im-
portant lemma, which states that the system (4)
is a comparison system of (1).

Lemma 2.2 If the solution of (4} exists and is
unique for any solution z(t) of (1) then the follow-
ing property holds fori=1,2,..r,

if o)l < z(to+6) V0 € [-h,0], (5)
then ||z:(®)|i < z(¢) Yt > 1.

Proof. : obtained by applying Lemma 2.1
and results in (Lakshmikantham and Leela, 1969;
Tchangani et al, 1997a).

On the basis of previous lemmas, we can now
prove the asymptotic stability condition of (1) ex-
pressed in the following theorem.

Theorem 2.3 The zero solution of (1} is asymp-
totically stable if there exists a positive vector u
and a positive scalar £ such that:

0

[P, 00+ Gtz |

—ri{t, o

(6)
Moreover, the set C(2{(Au)) for any positive scalar
A is positively invariant.

Proof. : According to Lemma 2.2, it is sufficient
to prove that the zero solution of (4) is asymptot-
ically stable. For this, define the function

o(2(t)) = mgx{";—f”}

and then establish as in (Tchangani, et al, 1997a)
that this is a Lyapunov-Razumikhin function.

When the bounds of uncertainties are constant
{(which is the most classical case), the conditions
are simplified as follows.

Corollary 2.4 If the scalars ayj, By, Vi are con-
stant and the matric F+ G 41, H 18 Hurwitz, then
the zero solution of (1) is asymptotically stable.

2.2 DEPENDENT-ON-DISCRETE-DELAY
CONDITIONS

In the above criteria, the parameters that mainly

ensure stability conditions are submatrices A;.

H{s,z¢(s))dslu < —eu.

But, the non delayed (h = 7 = 0) and non per-
turbed system (Aa;(.) = () = Ag() = 0)

corresponding to (1) is
.’E.L(t) = (Az' + Bi):ci(t), i=1,..71

which zero solution is asymptotically stable if the
matrices A; + B; is Hurwitz. According to this it
seems important to take into account a possible
stabilizing influence of matrices B;, which in turn
means to look for stability criteria depending on
the discrete delay. In the following subsection, we
introduce this dependency by using some transfor-
mation, classically based on the equality:

zi(t—h(t, z0)) = z:(t) — f Z;(t +u)du, (7)

h(t, :ct)

and so {1) can be developed, for ¢t 2> tp -+ h, as:
Zi(t) = (A + Bz(t) + Aay(t, z) + Abi(2, 2¢)
0
+f [Cizi(t + 8) + Ac;(s, x:(5))]ds

—r(t2:)

0
—B; A; f 2 (t +u)du
h.(t zt)

0
—B; f Aai(t + u, Tepy)du
_h(tlmt)

0
_Bf f 2 (T — h(t+u, 244,))du
—h(t,.’.&'t)

0
—-B; / oAbty T )du
h(t mt) .

0 0
—B,; / du f
—h(t,z;) —r(u,Tipe)

[Cizs(t + 1+ 8) + Aci(s, 2o (8)]ds (B)

Let us define matrices K (t,z;) , L(t, z;) , M(t+
Uy Baqs) » N (& + 1, g ) and P8, 251,,(s)) as

* Kyt,z) = piAi + B;) + aus(t, @) and
Kij(t’ xt) = aij(taxt)) J 7é i;
o Lij{t, @) = By (8 2e);

o Miu(t + u,zep0) = |[Bidilli + ||Billscus(t +
Uy Trgy) and Myt + u,zpqy) = oyt +
ua$t+u)5 J # i;

o Nii(t+u, oeru) = || BY||i+| BilliBu(t+1, Tesu)
and Ny (¢4, Tegn) = Big (B -+ u, Te1a), § 7 45

o Py(s, 2414(8) = [|1B:Cills  +
|| Billevii(s, zetu(s)) and Py(s,ziyuls)) =
'72'3'(3: mt+u(s))a J 7"é i3



then a system like (4) can be obtained for ¢ >
fg + h as

#Ht) = K(t,xe)2(t) + Lt, ) 2{t — {3, 21))

0
—{—f H{s,zi(s))ds +

—h({t,2,)

0
/ Mt + u, Br4q)2{(t + u)du +
—h.(t,a:t)

0
f Nt + v, Ty )2(E +u —
—h{t,xz;)

h(t 4+ u, Tsn))du +

0 0
LeenJ
—h(t,:ct) —T(t+u,$t+u)

P(s,zeyu(s))z(t + u+ s)ds 4]

and we have the Lemma 2.5:

Lemma 2.5 If the solution of (9) exists and is
unique for any solution x(t) of (1), then the sys-
tem (9) is a comparison system of (1) (this means,
verifies 5).

Remark 1 : In this case, the delay of the com-
parison system is twice the original delay.

Proceeding as previously leads to Theorem 2.6
and Corollary 2.7.

Theorem 2.6 The zero solution of (1) is asymp-
totically stable if there exists a positive vector u
and o positive scalar £ such that:

—EU > [K(t,:ct) +L(t: mt) +
0
f H(s,z,(s))ds +

_T(tswi)

fo (M(t 4+, o)

—h(t,mt)
0

+N(t+ v, ) pdu + f du
—h(t,z)

1]
/ P(s, z4uls))ds]u. (10)
— (U, s )

Moreover, the set C(Q(Au)) for any A > 0 is posi-
tively invarient.

Carollary 2.7 If the scelar bounds o;,8;, Vi
are constant and the matriz K+ L+Tp H-4-hy (M +
N) + by P s Hurwitz, then the zero solution of
(1) is asymptotically stable.

3 ASYMPTOTIC ATTRACTORS
We consider now the case where uncertainties are
bounded by constants (and not by gains}:

HAai(t,z)lls < i , [[ABEz): < B
||AC,;(t,.‘Et)H2' < v, Vo € O

In this case, it is not possible to derive a com-
parison system as {4)(9) by the previous method
because the system one can derive will be non ho-
mogeneous: the state space origin is possibly not
anymore an equilibrium. But, in this case it is
possible to estimate an attractor of (1). This is
important because, in practice it can only be suf-
ficient for a system to behave in the vicinity of an
operating point, without necessarily reaching it.

Definition 3.1 A subset C(Qg)) of C is a
(global) attractor of (1) if all trajectories of (1)
converge asymptotically towards C(Q¥q)) ; that is

Ve>0, 3T >0, Vi>tohT, dlzm(t), Ulg) <e

where z(t) is a solution of {I) with
d(wi(t), (@) = infy.enu(q) l:(t) — wll-

We shall only consider the independent-of-
discrete-delay case; to obtain the results depend-
ing on discrete delay the procedure is similar to
Section 2.2. Without lost of generality we consider
that the delays are constant, equal respectively to
k., and Ty, In this case the comparison system is
completely disconnected into:

Zi(t) = %(A)zt) +|Biflizi(t — hm) +

{
namf 24(t -+ 8)ds + s + B + T

—Tin,

i=1,2,..,r and so, Theorem 3.1 follows.

Theorem 3.1 If
Yi(A} + ||1Bi|l: + 7] |Cills < O

then the set C(Qq)) where ¢ = [q1,-,Gi, 1 gr)T
with
_ Qi+ B + Tm Vi

Vil Aa) + || Bills + T |Gl

g; =

is an asymptotically stable attractor of (1).

4 APPLICATION TO ARTIFICIAL
NEURAL NETWORKS

Figure 1 represents a Hopfield neural network
{Michel and Wang, 1995), where R;, C; > 0 denote
respectively resistance and capacitance of the ¢**
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Figure 1 — Hopfield neural network model

unit, Tj; = R%_j, Ry; represent the interconnection
resistance between the output of unit ¢ and the
input of j (Ri; can be negative because of sign
inversions).

During the implementation process of artificial
neural network by VLSI for instance , the introdue-
tion of time delay is unavoidable. So, the dynamic
equation of the network is (see Michel and Wang,
1995)

i(t) = —Az(f) + TS(z(t — ) + I(t)  (11)

where h is the transmission delay with z(t) =
Lomi(®), 7, 2(t) = Cow(t) 3 A = diag{a;},
i=1,2,.1 0= >0;L =L +30  |T
3 T = [Ty] 5 S(2) = [, si(2i), .07, silm:) = gi(E)
i vilt) = gs(us(t)). Function g; € C(Rs (_151))
corresponds to a nonlinear amplifier: it is strictly
increasing with ¢;(0) = 0, wgi{w;) > 0. We
consider it is differentiable, however this is not
necessary (see remark). Lastly, I = [..,I;.]7,
I;(t) € C(R™,R) is the external input.

Artificial neural networks as (11) are used in
many areas as irmage processing, pattern recog-
nition, optimization, etec. They are also used as
associative memories: in this case, the external
sources [; are usually assumed to be constant func-
tions, and asymptotically stable equilibria of (11)
are used as memories. Besides, it is shown on the
hasis of linearized equation of (11} that the system
can be either i.o.d. stable, or there exists a de-
lay such that the system becomes unstable (see for
instance (Niculescu, 1996) and references therein).
In the following, we will apply previous results by

considering nonlinear part of equation (11) as a
perturbation, so to derive stability conditions of
the equilibria of (11).

We will consider without loss of generality the
autonomous case of (11}, that is,

#(t) = —Az(t) + TS(z(t — b)) (12)

and give stability condition of the zero equilibrium.

et us sot D(z) = 252, §; — supgepn [Di(a),
G = sup;{$:i} and N = diag{3;} ; for a given ma-
trix M € R™*", |M| denotes the matrix with ab-
solute value of entries of M. We can then prove
the following proposition.

Proposition 1 If there exist ¢ vector u > § and
a scalar € > 0 such thot

1
A+ fo ITD(a(t — )| dnju < —cu

then the zero solution of (12} is asymptotically sta-
ble

Proof. Note that according to the fact that
S(0) =0, (12) can be rewritten as

() = —Ax(t) + [T /01 D(nz(t — h))dn] z(t — h).

and then apply Theorem 2.3.
The following corollary gives an easy-to-check
criterion.

Corollary 2 If there exists a matrix N* =
diag{8:} with 3f > 5, 1 = 1,2,.n such that
—A+|T| N* is Hurwitz, then zero solution of {12)
is asymptotically stable.

In particular, if

1 1
)8<— 1+_'_'_'n.'m ,é=1)21--"n5
Oi( Ri2j=1 IT"-.’J)

(13)
then the zero solution of (12) is asymptotically ste-
ble.

Remark 2 Note that if S(x) is not differentioble,
previous corollary con be applied if the condition

0< )f—g—z| < [BF holds; this is the condition re-
quired in (Michel and Wang, 1995). Condition

(13) can be used to design parameters of a neural
networks circuit.



5 CONCLUSION

The robust stability of large scale systems with
aftereffect has been considered in relation to both
uncertainties of model and time delay functions.
I.o.d. results were proposed, as well as d.d. ones.
The depend on the size of the discrete delays was
only considered, but a similar study can be done
on the basis of the distributed delays size. In the
(classical) case where uncertainties are bounded by
constants, an asymptotically stable attractor was
estimated, depending on the size of the delay. This
can be important in practice because it gives an
idea of the reachable target with regard to delay. A
practical example is studied to show the efficiency
of the results given in the paper.
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