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Abstract

This paper provides a siability criterion for
nonlinear neutral time-delay svstems. [t defines the
notion of Degenerate Comparison System, which is
an extension of a previous Vector-Lyapunov
Functions approach available for time-delayed
systems, and of a scalar-type result relative to neutral
ones. From this, the obtained stability co nditions
are to be checked on rwo simple systems : an
Ordinary Differential Equation (ODE), and an
Qrdinary Difference Equation.

1. INTRODUCTION

The direct Lyapunov's method remains of
basic interest for studying stability of nonlinear
Functional Differential Equations (FDE). It refers
either to the Razumikhin's approach [13] using
ordinary functions, or o Krasovskii's approach [9]
using functionals that are defined along the
trajectories of the system. Despite of recent results
{8] the general construction of such function(al)s
remains difficult in many cases.

An other approach is based on differential
inequalities : many authors obtained criteria based on
a so-called comparison system, that is expected to be
more easy to study, and which stability implies the
stability of the original system. This method was
first applied for investigating stability of ODE (see
for example [11][12]), and further, for FDE
(Lakshmikantham [10][3]). Recently, the authors
[13(2] proposed a systematic method for constructing
vector-comparison systems for FDE of retarded type,
that was shown to provide less conservative results

than scalar-comparison based criteria..However such ..

a vectorial method was not yet applied for FDE of
neutral type, and the only existing approach for this
neutral systems was based on scalar comparison
systems [5][6], with the interesting concept of
degenerate Lyapunov functional.

This present work enlarges this concept to
Vector Lyapunov Function (VLF), in order to
CONStruct a vector-comparison system. '
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A first part presents a systematic way of
constructing a Degenerate Comparison System
(DCS), and derives sufficient stability conditions.

A second part applies these results to an
example.

Notations and assumptions

The considered systems are of neutral type,
described by :
(% = A(t,xp)Dx; + Fz([. )
Dxy=x(t) - Bx{t- h)
where :
- h is a positive constant representing the time-delay
- B is a matrix with constant coefficients ;
- C = C( [tg-h, tg] , RP ) is the set of all continuous
functions mapping [tg-h. tp] onto RP,
- x{t) € RMand x; € C is the state function
classically defined by ’
V 8e [to-htg], x(8) = x(1+8)
- A(t,xy) € R1XN and F5 can involve unknown
coefficients ; they are assumed to present sufficient
smoothness properties ensuring the existence of a
solution of (1.1) (see for example (4]). A(t.xy) is
bounded for bounded x;, and in the following A(.)
represents a simplified notation for A(t,x,).
The solution xy = 0 is an equilibrium of (1.1), and
this is guaranted by :

(1.1}

Fa(t,) =0, VteR (1.2)
R" is decomposed into the direct sum of r subspaces
R™ (i = 1 to r), with xje R™ the projection of x
onto RM .

- V is some candidate Vector Lyapunov Function
(VLF), where V; is a scalar norm on R -
V:R"> Rr(rSn).

V(x) = [V Dy Vi), Vel T

(V is said to be a Regular Vector Norm).

- %(8) is the measure, or logarithmic norm [7}{8],

of the square matrix S & R%*Mi with respect to Vj.

(1.3)




It is assumed that F7 verifies a boundedness-type
condition on the subset ¢

V(Fa(tx) = N(t)V(DXt)

VxeQgC (1.4)
where N(t) is a matrix of size r with scalar
continuous nonnegative coefficients.

Lastly, Iy! denotes the absolute value of any scalar

2. COMPARISON SYSTEMS

Definition 1 :

A dynamic system (A} is said to be a Comparison
System of a dynamic system (B) with regard to
(asymptotic) stability, if the (asymptotic) stability
of the zero solution of {A) implies the (asymptotic)
stability of the zero solution of (B).

Definition 2 :
Let g(t,.) RxRf - RF be a quasi-monotone
nondecreasing function with regard to its second

argument, this is, verifying the usual Wazewski
conditions [12]{14].
Then system (2.1} :

Dty = g(ty) Vt 215, V y €R (2.1)

is a Degenerate Comparison System (DCS) of (1.1)
with respect to the VLF V and the set £, if the
following inequality is satisfied along every motion
of (1.1)

D*V(Dxp) £ glt,VIDx ) Vi2ig Vx el (2.2)

If Q =C, the degenerate comparison system is said
to be global.

Remark :
In this paper, we shall only use functions g-of linear
time-varying type :

g(Ly(t) = (M(D) +N(O)y () ' (2.3)

where M(t) : R = R™ is a time-continuous matrix
with nonnegative off-diagonal coefficients,
corresponding to inequalities of the type -

DV{Dx) < (M(t) + N()YV(Dxp)

Vizi, V% ell (2.4)

Lemma 1 : construction of DCS

Any system of form (1.1) with assumption (1.4)
admits a Degenerate Comparison System with
respect to the VLF V and the set £, defined by

d

S0< M + Ny (25)
where N(t) is defined by (1.4) and M(t) is defined by
M(t) = [pjj(0], with

Hii(0) = sup { Yi(AG)) txeefd },

Vi(AL)(Doy)
1) = VHALSRD)) |
Hij(t) sup { Vj((DXt)j) 1 xe Q).
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Proof : see appendix

corollary :

Any matrix My(1) + N (1) such that

(0 2 W)+ B30 = Kii() and v 3(02 ng()
(N( =[vy;(0]) also defines a DCS of (1.1) with
respect to the VLF V and the set §).

This corollary is important because it allows to
derive more simple DCS, that are easier to analyze
(linear time-invariant ones, for example).

Lemma 2 : (additional conditions for a
DCS to be a comparison system)

If B has all its eigenvalues inside of the unit circle,
then the system (2.5} is a comparison system of
(1.1) with regard 10 stabiliry and asymptotic
stability.

Proof :

Remark that the function y — (M(t) + N(t))y is
quasi monotone nondecreasing with respect to y.
Let us call y(t, V(D)) a solution of (2.5) with
initial condition y(tg) =V{De) then it is known
[12]{14] that

V(Dxt) £ y(t, V(D)) V t 2 tg, (2.6)

Considering a norm Il Il of R® and |l i the norm

induced by i Il on the subspace R (that is
Il xj fl = #1{0, .... O, xi, O, .... 01T 1) then :

r r
il Dxg 1 € TIDxilks TeVi(Dxoi)
i=1 1=1

r
< Teiyith V(Do) = k()
i=1
where the r coefficients c; are defined by the classical
"norm equivalence” relations :

lylliS & Vi(y) 2.7)

Applying the result .given in [5][6] we obtain the
conclusion.

Theorem (stability conditions)

Let us note d(tg,0) the transition matrix of system
{2.5).

If all the eigenvalues of B lie in the unit circle, and
if there exists M <= such that (¥t 2 tp)

(Do)l £ M) ( respectively Ib{tg,t)l| = 0 as

t = <), then the trivial zero solution of (1.1) is
stable (respectively asymptotically stable).



Proof : This is a direct application of previous
lemmas and ODE stability conditions.

3. EXAMPLE

Let us consider the system with an unknown varying
parameter d(.) (with known bounds) and &(.) (with
bounds to be calculated in order to ensure the
stability} :

dDx i -4+cos(t) sin(x 1 (1)) )DXH
dt -0.54() 5
o
(1)
[1+d()]o )x2(0)

¥ 0
Dix; = x(t) - ( }((L-h). Xp=0 (3.2)
0 0

d{.} is a scalar time-continuous function verifying
Id()I €1 forall t2¢pand all x;in C, and it is
assumed that ¥ is a constant verifying Il < 1.

The problem is to look for conditions on a(.} such
that the zero solution of (3.1) is asymptoticaly
stable,

Let us consider the VLF defined by

V(x) = [Ix]l.Ix21]T where x; represents the ith
component of vector X. Along the motions of (3.4)
the following inequality holds :

-3 1
D¥*V(Dxs) € ( J V(Dxt) +

0.5 -3

0
[ 2101 ixa(0) )

Viztgand x;in C
According to the definition of Dx; we obtain the
inequality :

-3 1

DtV(Dxp € [ ]V(Dx[) +
-5

0 0
( )\’(Dxt),
0 2lee( N

Vieztpand xpin C

We obtain the matrix M(t) + N(t) of DCS (2.5) as :

)

A condition for the zero solution of the global DCS
(2.5) to be asymptotically stable is :

' -3 1
M() + N(1) =(

0.5 -5+2la(.)
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()l < 21—3 Y t2tgand x¢in C. (3.3)

And as Iy < [, applying lemma 2 proves that (3.3)
is also a sufficient asymptotic stability condition of
the zero solution of (3.1).

APPENDIX : proof of lemma 1

Let us introduce the function
Q;: R? x R — R defined by :

1
ilxi.yil= lim = [Vi(xi + Ay - Vilx;
Qilxiyil A—-—)0+A[ i(xi + Ay - Vi(xpl
(A1)
The function Q; is well defined for any scalar norm

Vi on RM. It is known [7] that for any continuously
differentiable function (Dxy)j .

d(Dxp

d+V' Dx¢)i
d7VilDxpj) _ Qil(Dxy); _dt_] -

dt
r
Qil(Dxyi, X ACY(Dxpj+ Failtxy))] (A2)
=
by developing the sutn and considering the definition
of function Qj, we obtain :

417, .
& Vi) V'é(tD xOI)S Qil{Dxy)i, ACKi(Dxi] +

r
T Vi(AQjDxO+Vi(Fai(txp) (A3)

j=1,j=i

Let us define (for i=1...r) :

wii(t) = sup { Yi(AQ)ii) @ xc & Q}

Remark that

Yi(Ai) = sup (Vi(xi) 1Qi(x1.Ajixi) }

Xi# ,

Then relations (A3) and (AS5) imply :

d*Vi(Dxo)i)
dt

(Ad)

(AS)

< HAOHV((DXYD

I
+ Zl Vi(ARDx0N+ViFailtxe) (A6)
j= |

Vi(AL);DOxp)j)

Let jj(t) = sup { Vi@ tx e &) (A7)

(A6} with notations (A4) and (A7) yields :
+y. . r
g"—'g:)—x[)]—) < Wil Vi((Dxyi + ZMij(t)Vj((onj)
j=1,j=
+ Vi(Fai(t.xe)) (A8)
D+V(DX{) < M([)V(DX[) + V(Fz(t,Xg)
where the matrix M(t) is defined by :
Mii(t) = Wity s Mij(t) = wyj(0, 1 #
Considering the assumption (1.4) finally yields :
DHV(Dxy) € (M(1) + N(O)V(Dxy) (A9)
It js obvious that the matrix M(t) + N(t) has
nonnegative off-diagonal elements, which proves
lemma |.
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