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Abstract. This paper considers the robust, stabilizing control of time-delay, linear systems wit]
nonlinear uncertainties on the parameters and possible variations of the delays. It first gives somy
stability criteria for systems with both distributed and discrete delays, and then applies them to thy
design of input-delayed controllers. The proofs are based on comparison methods.
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1 Introduction and statement of the problem
The aftereffect phenomenon is & natural component of the dynamic processes in many engineeri i
fields (see for instance [4, 5]). Even if the process itself does not include delay phenomena in its inng
dynamics, the actuators, sensors and transmission lines that are involved in its automatic contxd
usually introduce such time lags. This explains the great number of works devoted to the so-calle]
functional differential equations (shortly, FDBs) [15]. !
Two generalizations of the Lyapunov direct method, by Razumikhin and Krasovskii, are availabld
for FDEs and still receive a great interest (see [3]); they either involve the construction of a definit]
positive function v(x(t)) (Razumikhin theory) or of a functional v(x:). For robust stability criteria, tig
Krasovskii approach is mainly chosen, using some generalized quadratic-type functionals: this lead]
to Riccati-type equations, which in turn are to be studied by computational algorithms such as LM 1
(linear matrix inequalities) approach. In the multi-delay case, the obtained LMIs have high dimensiof
(see for instance [3]). The distributed-delay case was razely considered through this approach [6].
The comparison systems constitute another option: the idea is to derive stability of original sy
tem by studying stability of a simpler system, obtained by using differential inequalities and vectol
Lyapunov functions (see [7, 8] for the general theory and [1, 16] for concrete choices of vector-Lyapund
functions with Razumikhin principle). It has shown some advantages in basic stability analysis, b
also for the estimation of the stability domains (see [16] and references herein). The results apply i
the stability study of retarded systems with discrete [1] or distributed delays {18] and to neutral ong
[19]. i

This paper applies this concept to the robust stability and stabilization of uncertain, mixed discret /‘
plus-distributed delay systems, }
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o(t) = Az(tg + Bx(t —n(t)) + f(t,2(t)) + 9(t, 2(t - n(t))
+ /_ g [CetE5) # ol o),
E 2 to, 7,(0) = p(0), 6 (60, W

Here, the delays n(t) (discrete) and 7(t) (distributed) are piecewise continuous functions verifying:
0<n{t) 0y and 0 < 7(8) < T A, B,C € R™ " are constant matrices, and the nenlinear function&;
f, g and A are uncertainties which can be structured or not ([1], see definitions in the addiﬁonal
notations). .

In the existing literature (see a recent survey in [3]), robustness is often considered with regard
to model uncertainties [13, 12, 11, 9, 1] or with regard to time-delay [21, 1]. In what concerns this
last, independent-of-delay (4.0.d.) stability criteria and delay-dependent (d.d.) ones are generally
distinguished: i.o.d. stability is a very strong property, since it holds for any value of the delay, but
needs restrictive conditions. Delay-dependent conditions are generally preferable since, in pra(’:tice
delay upper-bounds are known. , ,

But, to the best authors knowledge, there are no simple result that concern robust stability of
Qistriputeq-delay systems, even if this kind of operators is basic in finite-spectrum assignment of linear
tlme.-mvanant systems with constant delays [2]{22]. Hence, we hope the present study constitutes a,
possible approach to the robustness analysis of such controllers: robustness with regard to variations
of the delay, and with regard to some additive, nonlinear uncertainties.

The paper is organized as follows: Section 2 defines robust, delay-dependent stability criteria. A
theorem and its corollary axe proved for structured uncertainties, and statements in the unstructu'red
case follow without proof. Then, Section 3 uses these results for the stabilizing control of systems with
delayed state and input.

1.1 Additional notations

#(t) € R™, with norm ||.||, is the instantaneous value of the state function z, € C = C([—£,0;R?) ,
€ = max{n,,, Tm}, defined by: z,(0) =zt +0) V 6 € [-£,0];
” ‘
u L@,II]R nex n]I.{jL and [M| € R}*" are the component-to-component . absolute values of y € R™ and
M* denotes the matrix with the same diagonal entries as M € R™*™ but with off-diagonal absolute
values (m}; = my, m}; = |my).

(M) = lim, g, LM =1
€

the mafrix measure of lm? and "1 4' Sup M
Sta uctured mlcmltamtzes 1] on ate th Hlyp 11 nt-by-(: mponent effect of per urbations.
e can estimate the co OIE! Q!
Ihen7 VtE]R, VzeR":

Ift@)| < F(o)zl; F(t) € RY™,
lgt,2)l < GE)laf; G(t) e RY,
[h(s,@)] < H(s)}z|; H(s)eRP".

Unstructured uncertainties: only a global estimation of the influence of uncertainties can be ob-

 tained, and then, Yt € R, Yz € R?:

IFED) < a@)lel; o) €Ry,
lstt, ) < B¢ lel; AR Ry,
Iasa)l < v llel; s) € Ra
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2 Stability

VIany results concern the case where the matrix A is stable [9, 12, 14]; this restriction was pa,r"cially
wlved by considering the stabilizing influence of matrix B [3, 17]'. This section completes it by
ncluding the stabilizing influence of a distributed-delay effect {(matrix C).

2.1 Structured uncertainties

1 the case of structured uncertainties, a matricial stability criterion for system (1) can be derived as
xpressed in the following theorem.

Cheorem 1 The zero solution of (1) is asympiotically stable if there are a vector p > 0 and @ scalar
- > 0 such that for t > tg+ &, M(t)p < —ep holds for the matriz M(¢) defined by
0
(44 B+r()O) +FO+ GO+ [ RO
- =T

+n(t)(|BAl + |B¥|) + |B] 1 :(t) (Ft+u) + Gt +u)du

0 0 40
-HBC'l/ T(t+u)du + |B|/ / H(s)dsdu
-n(t) —n(t) J -7 {t+u)

28 oa+icmp+iol [ [+ Gie+ i

0 0 0 0 0
+|c? / ds/ 7(t +u)du + |C| / / / H{v)dvduds (2
=7(t} s —r(t) s J—r(ttu)

When all uncertainties have constant upper-bound gains and delays are constant, the conditions
f previous theorem become easier to check:

Jorollary 2 If F, G, H, n and T are constant, then the zero solution of (1) is asymptotically stable
f the following, constant matriz M is of Hurwitz-type' :

(A+B+7C)* +F +G +7H +n{|BA|+ |B*| + |B| (F + G)} +

3 |
+r((BC|+|BUH) + T{CAI + [CBI + 10| (F+ O} + T +1C1H) (@) |
?roof. Firstly, note that -
0
o(t—ne) = a(t)— /_ e, 4@
{1}
z(t+s) = z(t) -—/ Z(t + u)du. (5)

Thus (1) can be developed for ¢ > ip + ¢ into
#(t) = [A+ B +7($)Cla(t) + f(t,a(t)) + g(t, a(tn(®)) + [, (5, o(t+5)]ds
= [0 (BAw(t+u) + Bla(t+u-n(t+u)) + Bf (t+u, o(t+u)) + By(a(t-+u-n(t+u)))
+ J2 o4y [BOD(t+8)+Bh(s, o(t+s))|ds)du — [, { [7 (CA(t+u)+CBa(t+un(t+u))
+CF(t +u,2(t40))+Cg(@(t+un(t+u)) + [2 ) [CP0(t+0)+Ch(v, a(t+)) | dv)du}ds.

6)

3y using the vector-Lyapunov function V(z(t)) = [|z1(t)], .., |Z(t)}; .-, |2 (2)||7, one can derive a com-
arison system of (6) as in [1, 17, 18], leading to the result.

'Remark that this equivalently means that (3) is the opposite of an M-matrix, since it has positive off-diagonal
ntries: hence, its stability can be simply checked by calculating the signs of its principal minors.
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2.2 Unstructured uncertainties

Unstructured uncertainties leads to scalar stability criterion,

Theorem 3 The zero solution of (1) is asymptotically stable if there is an € > O such that

sup {p{A+ B+ 7@)C) + alt) + B() + / ’ ¥(s)ds +n(t)(| BA| + || BY|))
t2to+§ —7{t)

+HBH/0 (ot +u) + B(t +u)) d +||Bo||/0, (t +u) d
—n(t) ] ~7;,(t)T +u) U
0 0 72(t)

+”B”/*W(t)/—r(t+u)7(5) duds + =={ICAll + [OB])

0 ) 0 (1]
+1cl /_ . / fo(t + ) + B(t + w)] duds + | C2| /_ . / 7(t +u)duds

0 0 0
+C| / / / y(v)dvduds} < —¢ (7
~r(t) Js Jor(ttu)

Corollary 4 Ife, 8, v, n and T are constant, then the zero solution of (1) is asymptotically stable if
there ewists ¢ > 0 such that

—e > wA+B+10)+a+p+ry+q{|BA| +||BY| + Bl (o + 8)} +
2 3
m(IBCY+11B]17) + 5 {ICA] + [CB] + €] (a+ )} + TLiC?] + ICl 2},
' ®)
2.3 Generalization to multiple delays

The previous results are generalizable to the multiple-delay case. For instance, consider the following
system, -

T 0 .
a(t) =3 / (Cult + 8) + hi(s, (¢ + 5))] ds. ©)
2./,

=

with constant uncertainties bound, then it follows that -

Theorem 5 The zero solution of (9) is asymptotically stable if one of the following eonditions holds:
1) the uncertainties are structured and

r * r 2 »
(ZT,-oi) + 3 (GO +1Ci H) L+ 3" Hirsis Hurwitz; (10)

i=1 4,j=1 =1

2) the uncertaintics are unstructured and

r r 7 o )
7 (Z Tz'C'i) + Z’yﬂ',' + E (”CiC'j” +Cill ;) Ti;] <. V an
i=1 =1 i=1 o

Let us consider now the following system 0O<12<71)

3= [ 1Ol o) +ho,ale + )]sy

T1
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it will allow one to design controllers as (19). These equations represent the model of systems with
distributed delay followed by a discrete delay. Indeed, let put

wy=c [

t—{ry~72)

z(s)ds

then
&(t) =y(t — 7o)

Using transformation (5) and putting p = § (77 ~ 73) it follows that:
Theorem 6 The zero salutioﬁ of (12} is asymptotically stable if one of the following conditions holds:
1) the uncertainties are structured and
C*+p(|C?| +|C| H) + H is Hurwitz; (13)
2) the uncertainties are unstructured and if
1(©) +p(|C% +11Cl7) +7 <. (14) |

Proof. Analogous to the previous ones but considering a supremum over the time interval [—71, —72]. |

3 Stabilization
Most of the existing literature concerning the robust stabilization of
() = As(t) + Bzt — n(t) + f(t,=(t)) + g(x(t — n(t)) + D(t)u(?) (15)

(where u() : R — RP, piecewise continuous is the control , D : R — R™* continuous), consider a
memoryless control u(t) = k(z(t)) [9, 11, 12, 14]. It means that the parameter with crucial importance
is the matrix A which must be stabilizable (in the case D constant for example): if the pair (4, D) |
is not stabilizable, there will be no ariswer for the stabilization problem, even if the pair (4 + B, D)
(which corresponds to the case of negligible delay) is stabilizable. Moreover, memoryless control is
not so much realistic in our opinion, since in many cases the delay is introduced by the measurement |
or control devices, leading to u(t) = k(z(t — 7)) [10]. Then, the previous results appear as useful }
complements for the robust stabilization of (15) by means of a delayed control. We will give in |
the following two delayed feedback control laws as basic to stabilize the previous systems by basic |

applications of previous results.

3.1 Discrete-delayed control

Let us firstly consider the following controller, applied on system (15),
w(t) = K(B)a(t — 7(t)). (16) §

where K (t) is piece-wise continuous, and 7(t) verifies 0 < 7(t) < 7. The following result is a direct‘

application of [17, 18]. ]

Proposition 7 The system (15) is robustly stabilized by (16) if, for some scalar ¢ > 0, one of the

following conditions holds for t >t + &, :
1) in the case of structured uncertainties, there is @ vector p > 0, such that M(t)p < —ep holds}

for the matriz M(t) defined by
(A+B + DOK®) +F(t) + G(t) + n®){|BAl + | B?| + |B| (F() + G(1))
+IBD(K ()|} + T(0){| DK @) Al + |[DE)K )| (F() + G(2)) + DK () B|

+|(DOK )|} (1§ »
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2) in the case of unstructured uncertainties,

A +B+D)K() +a(t) + B() + n(O){IBA| + Bl (a(t) + B())
+||B*| + IBDO K@)} + r(t{ID@K @) A] + | DOK R (olt) + B(2))
+IDBE®B| +[[(DOK®)} < —e. (18)

3.2 Distributed delayed control

Now consider the following control law, involving a distributed-delay effect
—v(t)
u(t) = / Kzt + s)ds (19)
—r(t) :

where Tm > 7(t) > v(t) 2 0Vt, and K = constant. Application of the results of Section 2 to system
(15) with the control law (19), yields the following proposition.

Proposition 8 The system (15) is robustly stabilized by (19) if, for some scalar & > 0, one of the
following conditions holds fort > to + &,

1) in the case of structured uncertainties, there is a vector p > 0, such that M(t)p < —ep holds
for the matriz M(t) defined by

{A+B+[1(t) — v DK} + F(t) + G(t) + n(t) {|BA| +|B%|} + |B| /0( )(F(t +u)
—n(t

+G(t+u))du + |BD(HK] [ Zm(r(t ) = vt +w))du + 2 [r(0) - (D).

DAL+ 1Dkl + D0k [ 7 e

—v(t) 0
Gt +w))duds + |(DOK)?|. / . / (r(t+)v(t+u)duds;  (20)
—T(t 8
2) in the case of unstructured uncertainties,

HWA+ B+ (1(t) — v(t)) DIE)K) + oft) + B(t) + n(t){ | BA|| + ||B] (a(2)
]
+8®) + | B[} + 1BDG) K| / 60 = v+ )+ 05[72(%)
. —n(t

—AB{|D A o aft +u
OMIDOKA|+1POKBY) + 1POK] [ [ (et +u

—u(t) 0
+A(t + u))duds + || (DB K)?]. /_ e / (r(t + 1) = (t + u))du < —c. (21)

As before, if all parameters are supposed to be constant, the conditions are simpler:

Proposition 9 The system (15) with constant parameters n, D, is robustly stabilized by (19) with
Constant r, v, if one of the following conditions holds for t > t + ¢,
1) in the case of structured uncertainties with constant bounds,

. (A+ B+ (1 —v)DK)" + F + G +n{|BA| +|B|(F + G) + | B*| + |BDK| (r —v)}
+§(r2 - v"){|DKA| + |DK| (F + G) + |DKB|} + %(’l‘ —v)(7? - v*) [(DK)?| is Hurwitz;  (22)
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2) in the case of unstructured uncertainties with constant bounds,
0> p(A+B+ (1 —v)DK) +a+B+n{||BA| +||B] (o + B) +|BY|} +

IBDK| n(r —v) + %[7’2 ~V’}{|DKA| + |DKB| + | DK|| (o + B)}

SACTA, Vol.1, No.1, Eﬁ;‘ACTA’ Vol.1, No.1, 1998

21

13] Niculescu L., De Souza C.E., Dion J.-M. , Dugard L. (1994): Robust stability and stabilization for
uncertain hnea.r systems w1th state delay Single delay case (I), Proc. IFAC Workshop on Robust
Control Design, Rio de Janeiro, Brazil, pp. 469-474.

Phoojaruenchanachai 8. and Furuta K. (1992): Memoryless Stabilization of Uncertain Linear

14])
1 2 2 9 Systems Including Time-Varying State Delays, IEEE Trans. Awut. Control, Vol. 37, No. 7, pp.
3 (T =) (7 =) [(OKY. @ 1022-102. .
15] Richard J.-P. (1998): Some trends and tools for the study of time-delay systems, Proc. IEEE-

4 Conclusion

The problem of input-delayed, robust stabilization of systems with aftereffect has been studied in b
structured and unstructured cases. Original points are: 1) the possibility for the process or control
involve distributed delays; 2) the consideration of possible uncertainties on the (constant or varying
delays; 3) the relative simplicity of the conditions in the time-invariant case. 4) the ability to stug
multiple-delay case (even if we only studied here a special case (9) without discrete delay).
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