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Abstract 

This paper defines several Riccati equations that allow 

checking the stability of difference equations with delay effect 

as xi+1 = 

  j= 0

m

∑ Aj xi-j  (xi ∈ ℜn). These various matrix Riccati 

equations have the same dimension n than the vector x, 

whatever the order m may be: this represents an advantage 

for high orders m when compared to classical matrix 

Lyapunov equations which should be of order mn. For 

instance, as a corollary, independent-on-delay (m) conditions 

are derived in the special case xi+1 = A xi + Bxi-m. All the 

proposed conditions are sufficient, but tend to necessary-and-

sufficient ones if there is no delay effect (Aj = 0 for j ≥ 0). 

 

1 Introduction 

Many recent results are dealing with the modeling, 

stability and control of continuous-time, differential-

difference equations (see e.g. [K-S 96, D-V 97, RIC 98] and 

included references). The stability of difference systems was 

not so often considered, even if significant applications are 

existing (sampling control of delay systems, or asynchronous 

block iterative computations [KBS 90]): in the linear case, 

except some recent results [V-I 95], the main tools remain the 

usual test of the system eigenvalues, or the classical, quadratic 

stability approach involving discrete Lyapunov equations (see 

for instance [JUR 90, K-B 60, LAS 86, B-T 96]).  

Consider for instance the difference equation 

xi+1 = A xi ,     i ≥ 0, xi ∈ℜ
n
, A constant (n×n) matrix. (1) 

It is well known [K-B 60] that a necessary and sufficient 

condition (N.S.C.) for the asymptotic stability of (1) is the 

existence of a symmetric, positive-definite matrix P which is 

the (unique) solution of the matrix Lyapunov equation 

A’PA - P = -Q (2) 

for any symmetric, positive-definite matrix Q. 

Consider now the simple difference equation with delay, 

xi+1 = A xi + Bxi-m , i ≥ 0. (3) 

The scheme (1)-(2) may again be considered for stability 

investigation of (3): a new phase vector yi = [xi’ , …, xi-m’]’ 

has to be introduced, which allows rewriting (3) in the form 

(1) but with dimension mn. After this, stability condition in 

the form (2) can be used.  

But, two obstacles arise in this case: 

i) the dimension of y tends to infinity as m tends to infinity 

(it means that the dimension of the vector y and matrix P 

tends to infinity); 

ii)  if we try to investigate robust stability of (3) with respect 

to m (it means, independently of the value of m), then we 

have to check an infinite number of conditions of the form 

(2), (i.e. for each value of m). 

Other ways to investigate stability of (1) in a necessary 

and sufficient manner are connected with the very classical 

location of the roots of the characteristic equation 

corresponding to (1), or to existence of an integer m ≥ n, of a 

matrix Γ∈ℜ
m×n

 with infinite norm less than one, and of a 

matrix L∈ℜ
n×m

, such that A’L - LΓ’ = 0.  

However, the attempts to generalize these approaches for 

(3) are connected with the same obstacles (i) and (ii) 

mentioned above.  

To overcome these computational limits, some sufficient 

conditions were derived from the use of particular norms, 

leading to root-location and matrix techniques (Gershgorin 

circles, Cassini ovals, Metzler-matrices).  

Recently, a more interesting result by Verriest and Ivanov 

[V-I 95] really considered equation (3) as a delay system: this 

allowed to investigate its stability by using a Lyapunov-

Krasovkii like approach, connected with Riccati matrix 

equations in the matrix P. This way allows keeping the n×n 

dimension of these matrix Riccati equations (then, n(n+1)/2 

parameters) for all values of delay m, and consequently to 

obtain robust stability conditions with respect to m. 

The present paper enlarges these results in several senses: 

- we consider the more general equations, as xi+1 = A0xi + 

A1xi-1 …+ Amxi-m (then, including intermediary terms) and 

the time-varying case xi+1 = Aixi + Bixi-1, for instance; 

- moreover, for the same original equation, we explain the 

way to obtain various matrix Riccati equations by 

introducing various transformations (or various auxiliary 

Lyapunov functions) and iterations.  

Of course, the greater number of Riccati equations we 

have, the greater part of stability domain we can obtain. 

Besides, note that all these Riccati equations will coincide 

with (2) if one suppose the delay is absent. 
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2 Basic result 

The basic tool we shall use to obtain Riccati equations is 

connected with the following Lyapunov-like theorem, stated 

below for system (3), where notation | . | is a norm in ℜ
n
. 

THEOREM: System (3) is asymptotically stable if there is a 

function V(i, x-m, ..., x0 ) such that 

ω1(|x0|) ≤ V(i, x-m, ...,x0 ) ≤ ω2 (|x-m| + ... + |x0|)  

and   ∆V(i, x-m, ..., x0 ) ≤ - ω3(|x0|), 

where ∆V denotes the shift of the function V along the 

solutions of: 

∆V(i, x-m, ..., x0 ) = V(i+1, x-m+1, ..., x1 = Ax0 + Bx -m ) 

     - V(i, x-m, ..., x0 ), (3) 

with continuous, positive, increasing, scalar functions ωj such 

that ωj(0) = 0. 

 

3 Introductory results: the simple case m=1 
Let us describe in details the proposed procedure for 

equations (3) with m = 1. 

xi+1 = Axi + Bxi-1  (4) 

Put the Lyapunov equation V for (4) as a sum V = V1 + V2  

and take V1 = x’i P xi where symmetric matrix P > 0 has to be 

defined. We have: 

∆V1 = x’i+1 P xi+1 - x’i P xi  (5) 

  = (Axi + Bxi-1)’ P (Axi + Bxi-1) - x’i P xi  

= x’i[A’PA -P]xi + x’iA’PBxi-1 + x’i-1B’PAxi + x’i-1B’PBxi-1. 

Now let us choose V2: 

V2 = x’i-1[ R + B’PB ] xi-1,  (6)  

where R > 0 is a symmetric matrix to be chosen. Then, 

∆V2 = x’i[ R + B’PB ] xi - x’i-1[ R + B’PB ] xi-1 (7) 

But, by adding and subtracting a term x’iA’PBR
-1

B’PAxi 

to some part of (5): 

x’iA’PBxi-1 + x’i-1B’PAxi - x’i-1Rxi-1 ± x’iA’PBR
-1

B’PAxi  (8) 

= -[Rxi-1- B’PAxi]’ R
-1

[Rxi-1 - B’PAxi] + x’iA’PBR
-1

B’PAxi. 

From (5)-(8), it follows that 

∆V = x’i[A’PA – P + R + B’PB + A’PBR
-1

B’PA]xi  

 - [Rxi-1- B’PAxi]’ R
-1 

[Rxi-1 + B’PAxi] .  

Hence we obtain the following, first result. 
 

THEOREM 1: Assume that for some matrix R > 0 there exists a 

matrix P > 0 such that the matrix 

 A’PA + B’PB – P + R + A’PBR
-1

B’PA = -Q (9) 

is negative-definite. Then (4) is asymptotically stable. 
 

Now, let us show how, by using an other type of rewriting 

of type (8), we could deduce a different Lyapunov candidate 

function and, in turn, obtain an other Riccati equation. Choose 

V1 as previously: then for ∆V1 we have representation (5). 

Note that, by adding and subtracting the term x’iRxi to some 

part of (5), 

x’iA’PBxi-1 + x’i-1B’PAxi  ± x’iRxi  

= -[Rxi-A’PBxi-1]’R
-1

[Rxi-A’PBxi-1] 

+ x’i-1B’PAR
-1

A’PBxi-1+ x’iRxi. (10) 

Hence, if we choose as V2 the function 

V2 = x’i-1B’PAR
-1

A’PBxi-1+x’i-1B’PBxi-1 ,  (11) 

the difference ∆(V1+V2) satisfies:  

∆(V1+V2) = x’i[A’PA-P+R+B’PB+B’PAR
-1

A’PB]xi 

 -[Rxi-A’PBxi-1]’R
-1

[Rxi-A’PBxi-1]. 

This allows deriving the following theorem. 

 

THEOREM 2: Assume that for some R > 0 there exists a matrix 

P > 0 such that the matrix 

A’PA – P + R + B’PB + B’PAR
-1

A’PB = -Q (12) 

is negative-definite. Then (4) is asymptotically stable. 

  

Comparison of (9) and (12) shows that they differ only in 

nonlinear (quadratic) terms where matrices A and B are 

replacing each other. 

 

Remark 1: Using other transformations, it is possible to 

obtain conditions in terms of existence of linear matrix 

equation of dimension n (n(n+1)/2 parameters). In fact, take 

V1 = xi’Pxi as previously and V2 = 2xi-1’B’PBxi-1. Then: 

∆(V1+V2) = xi’[A’PA-P+2B’PB]xi + xi’A’PBxi-1 + xi-1’B’PAxi  

 - xi-1’B’PBxi-1± xi’A’PAxi 

 = xi’[2A’PA-P+2B’PB]xi -[Bxi-1+Axi]’P[Bxi-1+Axi]. 

Hence, if there exists a matrix P > 0 such that the matrix 

2(A’PA+B’PB)-P = -Q is negative definite, then system (3) is 

asymptotically stable. But it seems that this linear description 

of the matrix P is more restrictive comparing with the Riccati 

one because, e.g., if B = 0, the Riccati approach coincides 

with the necessary and sufficient condition (2), while the 

linear one does not. 

Remark 2: Other possibilities to obtain various Riccati 

equations arise if we iterate right hand side of (3) several 

times. We shall describe this approach in more details after 

consideration of the general case. 

 

4 The general case 

Consider now equation 

xi+1 = 

  j= 0

m

∑ Aj xi-j     (13) 

(i ≥ 0, Aj (j = 0,1,2,...,m) constant n×n matrices, m fixed integer). 

Similarly to (9), we obtain the following theorem (in the 

following equation (14), it is assumed that the sum is equal to 

zero if the upper limit of the summation is less than the lower 

one). 
 

THEOREM 3: Assume that for some matrices Ri > 0 there exists 

a matrix P > 0 such that the matrix (14) 

  j= 0

m

∑ Aj’PAj - P +

  j= 0

m

∑ Rj  + ∑
−

=

1m

0j

Aj’P ∑
+=

m

1jl

AlRl
-1

Al’PAj =-Q<0  

is negative definite. Then, the system (13) is asymptotically 

stable. 

Other Riccati equations (like (12) for the case m=1) can be 

obtained from (14) if in any arbitrary chosen nonlinear term, 

or any set of terms 

Aj’PAlRl
-1

Al’PAj , (15) 

the matrices Aj and Al are formally replaced by the places, 

which means, e.g., that instead of (15), we have the term 

Al’PAjRl
-1

Aj’PAl . (16) 

Proof. First part of Theorem 3: for the shake of simplicity, let 

us consider the case m = 2, 
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xi+1 = A0 xi + A1 xi-1+ A2 xi-2 .  (17) 

Take V1 = x’i Pxi . Then 

∆V1 = (A0 xi + A2 xi-2)’P(A0 xi + A2 xi-2) 

+xi-1’A1’P (A0 xi + A2 xi-2)+(A0 xi + A2 xi-2)’PA1xi-1 

+ xi-1’A1’PA1xi-1 –xi’Pxi  (18) 

Take as a second part of V the function  

V2 = xi-2’[A2’PA2+R1]xi-2 . Then we have: 

(A0 xi + A2 xi-2)’P(A0 xi + A2 xi-2)-xi’Pxi+∆V2  

 = xi’(A0’PA0-P)xi+ xi-1’(A2’PA2+R1)xi-1  

 - (R1xi-2-A2’PA0xi)’R1
-1

(R1xi-2-A2’PA0xi)  (19) 

 + xi’A0’PA2R1
-1

A2’PA0xi 

Take now as third part V3=xi-1’(A2’PA2+ A1’PA1+R1+R2)xi-1. 

Then,  

xi’A0’PA1xi-1+xi-1’A1’PA0xi  

 + xi-1’(A2’PA2+A1’PA1+R1)xi-1+∆V3  

 = xi’(A2’PA2 + A1’PA1+R1+R2)xi  

+ xi’A0’PA1R2
-1

A1’PA0xi  

- (R2xi-1-A1’PA0xi)’R2
-1

(R2xi-1 - A1’PA0xi) .  (20) 

At last, put V4 = xi-1’R3xi-1 .  Then: 

xi-1’A1’PA2xi-2 + xi-2’A2’PA1xi-1 +∆V4   

= xi’R3xi - [R3xi-1-A1’PA2xi-2]’R3
-1

[R3xi-1-A1’PA2xi-2]  

+ xi-2’A2’PA1R3
-1

A1’PA2xi-2 . (21) 

So, if we take V = V1 + V2 + V3 + V4 + V5 + V6 , where  

V5 = xi-2’ A2’PA1R3
-1

A1’PA2 xi-2  

and V6 = xi-1’A2’PA1R3
-1

A1’PA2xi-1 , 

we obtain by virtue of (18)-(22): 

∆V= xi’[-P+

  j= 0

2

∑ (Aj’PAj+Rj) + A0’PA2R1
-1

A2’PA0 

+ A0’PA1R2
-1

A1’PA0 + A2’PA1R3
-1

A1’PA2]xi   

- (R1xi-2-A2’PA0xi)’R1
-1

(R1xi-2-A2’PA0xi)  

- (R2xi-1-A1’PA0xi)’R2
-1

(R2xi-1-A1’PA0xi)  

- ( R3xi-1-A1’PA2xi-2)’R3
-1

(R3xi-1-A1’PA2xi-2). (23) 

We obtain from (23) one of the possible Riccati equations : 

  j= 0

2

∑ (Aj’PAj+Rj) + A0’PA2R1
-1

A2’PA0  

 + A0’PA1R2
-1

A1’PA0 + A2’PA1R3
-1

A1’PA2 - P = -Q . (24) 

Second part of Theorem 3: other Riccati equations can be 

obtained from (24) by changing matrices Ai and Al or some 

nonlinear terms. Let us justify the possibility of one of the 

interchanges for the last summand in the left-hand side of (24) 

(other changes are justified just in the same manner). Let us 

keep without any change the transformations (18)-(20) and 

make some modifications beginning with the formula (21). 

Namely, put V4 = xi-2’R3xi-2. Then, instead of (21) we obtain: 

xi-1’A1’PA2xi-2 + xi-2’A2’PA1xi-1 + ∆V4  

= - [R3xi-2-A2’PA1xi-1]’R3
-1

[R3xi-2-A2’PA1xi-1] 

+ xi-1’[R3+A1’PA2R3
-1

A2’PA1]xi-1 (25) 

From (25), it is clear that we must choose as V5  

V5 = xi-1’[R3+A1’PA2R3
-1

A2’PA1]xi-1 . (26) 

From (18)-(20), (25) and (26), it follows that: 

∆(V1+...+V5) = xi’[-P+ ∑
=

++
2

0j
jjjjjj )RPA)(ARPA(A  

+ A0’PA2R1
-1

A2’PA0 + A0’PA1R2
-1

A1’PA0  

+A1’PA2R3
-1

A2’PA1]xi  

-(R1xi-2-A2’PA0xi)’R1
-1

(R1xi-2-A2’PA0xi) 

- (R2xi-1-A1’PA0xi)’R2
-1

(R2xi-1-A1’PA0xi)  

- (R3xi-2-A2’PA1xi-1)’R3
-1

(R3xi-2-A2’PA1xi-1). 

As a result, we obtain Riccati equation for P: 

  j= 0

2

∑ (Aj’PAj+Rj) + A0’PA2R1
-1

A2’PA0  

 + A0’PA1R2
-1

A1’PA0+A1’PA2R3
-1

A2’PA1-P = -Q . 

In a similar way, we can prove the validity of other Riccati 

equations for the matrix P, obtained from (24) by formal 

interchange of Aj and Al , l ≤ j, in one or some terms. � 

 

5 Delay-independent stability conditions 

Consider equation (3) in which delay m is an unknown 

integer. In this case, the Riccati equation corresponding to 

(14) is reduced to: 

A’PA + B’PB + R - P + A’PBR
-1

B’PA = -Q , (27) 

and the analogous one, using (15)-(16), is 

A’PA + B’PB + R - P + B’PAR
-1

A’PB = -Q . (28) 

Both of these equations do not depend on m and, hence, 

give us asymptotic stability conditions for all values of m > 0, 

as stated in the following corollary. 

 

COROLLARY 1: The system (3), xi+1 = A xi + Bxi-m , is 

asymptotically stable independently of the delay m if, for 

some Q > 0 and R > 0, there exists a matrix P > 0 satisfying 

one of the Riccati equations (27) or (28). 

 

Remark that this results was also given in [V-I 95]. 

Example: Let equation (3) be a scalar one: 

xi+1 = axi + bxi-m . (29) 

Then, both equation (27) and (28) being applied to (29) 

coincide and have the form 

(a
2
 + b

2
 -1 + Pb

2
a

2
R

-1
)P + R = -Q . (30) 

Let us choose R in such a way that the left-hand side of (30) is 

minimized with respect to R > 0, which means R = P |ab| . As 

a result, we obtain : 

(a
2
 + b

2
 -1 + Pb

2
a

2
R

-1
)P + R = [ (|a| + |b|)

2
 -1 ] P. 

Hence, asymptotic stability condition of (29) independent on 

m has the form 

|a| + |b| < 1 (31) 

 

6 Iteration of the equation 

Other forms of Riccati equation (and consequently, other 

stability conditions in the space of parameters) can be 

obtained if we transform some of the terms in the right-hand 

side of the original, difference equation. For instance, 

consider the simple equation (4): in the right-hand side of this 

equation, the terms Axi and Bxi-1 can be transformed, for 

example, as follows: 

Axi = A(Axi-1+Bxi-2), (32) 

Bxi-1 = B(Axi-2+Bxi-3),   … and so on. 

Let us choose one of these transformations and rewrite 

equation (4) in the form 

xi+1 = (A
2
+B)xi-1+ABxi-2. (33) 
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Then, by virtue of (14) and (33), we obtain that equation 

(4) is asymptotically stable if there exists the solution P > 0 of 

the Riccati equation: 

B’A’PAB + (A
2
+B)’P (A

2
+B) + R - P  (34) 

 + (A
2
+B)’PABR

-1
B’A’P(A

2
+B) = -Q , 

where R>0, Q>0 are some matrices which can be chosen 

arbitrarily. 

 

Example: Consider again the scalar equation (29), now with 

m=1. Of course, necessary and sufficient conditions of 

asymptotic stability, in this case, are known to be  

| b| < 1      and        | a| < 1-b (35) 

However, as an illustration, let us apply the above procedure: 

the equation (34) gives us: 

[(a
2
+b)

2
+b

2
a

2
 -1 + R

-1
(a

2
+b)

2
b

2
a

2
P]P + R = -Q  

The point R0 > 0 where the left-hand side will be minimum is 

R0 = P|(a
2
+b)ab|. At this point,  

[(a
2
+b)

2 
+b

2
a

2
 -1+R0

-1
(a

2
+b)

2
b

2
a

2
P]P+R0 =[(|a

2
+b| + |ab|)

2 
-

1]P. 

Hence, using this approach, we obtain the following stability 

condition of the scalar equation (29) with m = 1 : 

|a
2
+b|+|ab| < 1. (36) 

Figure 1 shows that for b ≥ 0, inequality (36) represents the 

same part of stability domain as (31); but for b < 0, it provides 

(in the case m = 1) a greater estimate of this stability domain. 

We can do further approximation and rewrite equation (29) in 

the form: 

xi+1 = (a
3 
+ 2ab) xi-2 + b(a

2 
+ b) xi-3 . (37) 

Riccati equation for (37) by virtue of (14) has a form 

(a
3
+2ab)

2 
+ b

2 
(a

2 
+ b)

2 
+ R + (a

3 
+ 2ab)

2 
b

2 
(a

2 
+ b)

2 
R

-1 
P = -Q 

Choosing here R > 0, as previously from the condition of the 

minimum of the left-hand side, we obtain that the stability 

domain is defined by the inequality: 

|a
3
+2ab| + |b(a

2
+b)| < 1 (38)  

Inequality (38) gives, for b > 0, the same part of stability 

domain as (31) but, for b < 0, represents the greater part of it 

comparing with (31) and also to (36). 

 

8 Other, various Lyapunov functions 

8.1 First variation 

So far as, the Lyapunov function V1 was chosen in a 

simple quadratic form V1 = xi’Pxi . But, of course, as V1 can 

be taken other suitable functions which could lead us to other 

Lyapunov functionals V and as a result to the greater part of 

stability domain in the space of parameters. Let us illustrate 

this kind of action by considering equation (4). Take as a 

function V1 the following: 

V1 = (xi +Bxi-1)’ P (xi +Bxi-1) , 

where matrix P = P' > 0 has to be defined. We then have: 

∆V1 = (xi+1 + Bxi)’ P (xi+1 + Bxi) - (xi + Bxi-1)’ P (xi + Bxi-1) 

 = (Cxi + Bxi-1)’ P (Cxi + Bxi-1) - (xi +Bxi-1)’P (xi +Bxi-1) , 

where C = A+B. Now let us take V2 = xi-1’Rxi-1, where R > 0. 

Then, I being the identity matrix, we have for V=V1+ V2: 

∆V=xi’[C’PC-P+R]xi+xi’[C’-I]PBxi-1 

 +xi-1’B’P[C-I]xi-xi-1’Rxi-1 

= xi’[C’PC-P+R+(C-I)’PBR
-1

B’P(C-I)]xi  

 - [Rxi-1-B’P(C-I)xi]’R
-1

[Rxi-1-B’P(C-I)xi], 

which leads to the following result. 

 

THEOREM 4: Assume that for some symmetric matrices R > 0, 

Q > 0, there exists a symmetric matrix P > 0 satisfying the 

Riccati equation  (39) 

(A+B)’P(A+B) – P + R + (A’+B’-I)PBR
-1

B’P(A+B-I) = -Q.  

Then system (4) is asymptotically stable. 

 

Example: Consider once more scalar equation (29) with m=1. 

Then, equation (39) gives us the equation for P: 

[(a+b)
2
 -1]P + R + (a+b-1)

2 
b

2 
P 

2
 R

-1 
= -Q (40) 

Choose R from the condition minimizing the left hand side of 

(40) with respect of R > 0, i.e.,  

R = P | (a+b-1)b | . 

Then equation (40) gives us the following conditions of 

asymptotic stability of (29) with m=1, 

(a + b)
2
 + 2 |b(a + b -1)| < 1 . (41) 

Comparing with the above obtained stability domain, 

inequality (41) represents an improvement: stability domain 

given by (41) is shown on Fig. 1 which shows, in particular, 

that system (29) can be asymptotically stable even for a > 1 .  

It means that stability, in this case, is achieved due to the 

presence of delay in equation (29). 

 

8.2 Second variation 

Using other Lyapunov functions V1, we should be able to 

enlarge stability domain. Consider once more equation (4) and 

take as the Lyapunov function V1 the following: 

V1 = ( xi , xi-1 ) 








PP

PP

2
'
3

31
( xi , xi-1)’ (42) 

where P1 and P2 are symmetric positive definite (n×n) 

matrices, matrix P3 is (n×n) and the choice of these matrices 

must be done in such a way that the matrix P, 

P = 








PP

PP

2
'
3

31
  (43) 

is symmetric and the quadratic form (42) is positive definite 

with respect to either xi or xi-1.  

Let us introduce also V2 = xi-1’ R xi-1 , where R > 0 . Then, 

for V = V1+V2 , we have: 

∆V = xi’[A’P1A + A’P3 + P3’A + P2 - P1 + R  (44) 

+(B’P1A+B’P3-P3)’R
-1

(B’P1A+B’P3-P3)]xi+ xi-1’(B’P1BP2)xi-1 

-[Rxi-1-(B’P1A+B’P3-P3’)xi]’R
-1

[Rxi-1-(B’P1A+B’P3- P3’)xi]. 

Let us look for a matrix P satisfying the above-formulated 

assumptions in the form: 

P3 = CP1 , P2 = I+B’P1B , (45) 

where C1 is some non-negative constant matrix and I is the 

identity matrix.  

From (44)(45) the following result follows. 

 

THEOREM 5: Assume that for some symmetric matrices R > 0, 

Q > 0, C > 0, there exists a symmetric matrix P1 > 0 satisfying 

the Riccati equation 

A’P1A + C(A’P1+P1A) + I + B’P1B-P1 + R 

+ (B’P1A+CB’P1-CP1)’R
-1

(B’P1A+CB’P1-CP1) = -Q.  (46) 
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Then, system (4) is asymptotically stable. 

 

Example: Let us apply this approach to the scalar equation: 

xi+1 = axi + bxi-1. 

Then, from (45) and (46), it follows that: 

P1 = 2(1-b)(1-b)
-1

[(1-b)
2
-a

2
]

-1
 , 

P2 = 1+b
2
P1 , (47) 

P3 = ab(1-B)
-1

P1 . 

The matrix (43) with the entries (47) is positive definite if and 

only if: 

| b| < 1  and  | a| < 1-b . (48) 

Hence, the last approach has given us the whole, necessary 

and sufficient stability domain (35) in the space of parameters 

(a, b) (see Fig. 1). 

 

9 Time-dependent systems 

The same description of stability properties in terms of the 

solutions of Riccati equations can be also done for some 

discrete equations with time-varying parameters. Necessary 

and sufficient conditions were obtained [OPO 86] for : 

xi+1 = Aixi  ,   i ≥ i0 (49) 

with Ai belonging to some compact set.  

These conditions (existence of a norm | . | over ℜ
n
 such that 

for any i, | Aixi | < α| xi | with some unique real α belonging to 

[0,1[) are not so easy to apply (the problem is to find this 

norm) and, a fortiori, encounter the same computational limits 

when considering delayed equations as (3) (here, with varying 

A and B). This section will apply the same idea as previously. 

For simplicity sake, we shall consider here the case m=1, but 

generalization to any m is possible. Then, consider the 

equation: 

xi+1 = Aixi + Bixi-1 , i ≥ i0 , (50) 

where xi ∈ ℜ
n
 and Ai, Bi are some prescribed (n×n) matrices. 

Let us take V1 = xi’Pi xi , then: 

∆V1 = (Aixi + Bixi-1)’Pi+1(Aixi + Bixi-1) - xi’Pxi  

      = xi’[Ai’Pi+1Ai-Pi]xi + xi’Ai’Pi+1Bi xi-1  

 + xi-1’Bi’Pi+1Aixi + xi-1’Bi’Pi+1Bixi-1 . 

Let Ri be a sequence of symmetric positive definite matrices, 

and V2 = xi-1’[Ri + Bi’Pi+1Bi]xi-1 : 

 ∆V2 = xi’[Ri+1 + Bi+1’Pi+2Bi+1]xi - xi-1’[Ri + Bi’Pi+1Bi]xi-1 . 

Remark also that: 

xi’Ai’Pi+1Bixi-1 + xi-1’Bi’Pi+1Bixi-1 - xi-1Rixi-1  

 = -[Rixi-1 - BiPi+1Aixi]’Ri
-1

[Rixi-1 - BiPi+1Aixi]  

 + xi’Ai’Pi+1Bi’Ri
-1

BiPi+1Aixi. 

As a result, we obtain the following conclusion. 

 

THEOREM 6: If for some matrices Ri > 0 there exist symmetric 

matrices Pi > 0 such that all the matrices  

 Ai’Pi+1Ai - Pi + Ri+1 + Bi+1’Pi+2Bi+1+ Ai’Pi+1Bi’Ri
-1

BiPi+1Ai = Qi  

are uniformly negative definite, then system (50) is uniformly 

asymptotically stable with respect to the initial instant i0. 

  

 

10 Conclusion 

Several Riccati equations have been formulated, giving 

sufficient stability conditions. The lack of necessity is 

compensated by an important reduction of the order of the 

involved matrices equations. As in [V-I 95], the presented 

Riccati-equation-based criteria, using different ways of re-

writing some initial equations, can be compared to recent 

results presented for differential-difference systems. The 

original contribution can be summarized in to main points: 

1) The class of difference systems considered in [V-I 95] 

(system (3), Corollary 1) has been enlarged to systems 

with several delays (system (13), Theorem 3) and time-

dependent systems (system (50), Theorem 5).  

2) Several ways of generalization have been presented: our 

aim was not only to obtain some stability conditions in the 

form of Riccati equations, but also to indicate how various 

other forms of Riccati equations can be obtained, and 

demonstrated some of them. 

3) Moreover our approach allows using degenerate 

functionals and investigate the possibility of stabilization 

by using delay effect. 
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Figure 1: comparison of the stability domains (31) (delay-independent), 

(36), (38), (41) and the N.S.C. (35). 
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