Contribution to the control of nonlinear systems under aperiodic sampling

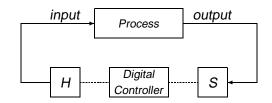
Hassan Omran

Thesis supervised by:

Jean-Pierre Richard Françoise Lamnabhi-Lagarrigue Laurentiu Hetel Professor, Ecole Centrale de Lille CNRS Research Director, L2S CNRS Research Associate, LAGIS

Sampled-data systems

Introduction



Digital/Networked Control Systems

Applications of sampled-data

Introduction

The HYCON2 Project

Highly-complex and networked control systems (HYCON2)

- FP7 project coordinated by Françoise Lamnabhi-Lagarrigue (CNRS).
- WP2 is related to research on Networked Control Systems.

Challenges in sampled-data control

Processor: limited calculation power

Network: finite bandwidth

Sampler: minimum responding time

⇒ finite number of samples per time unit

Challenges in sampled-data control

Sampler clock: jitter Network: packet dropouts

Scheduling: interaction between algorithms Real-time computing: microprocessor latency ⇒ sampling is not necessarily periodic

How to ensure robustness with respect to asynchronous sampling?

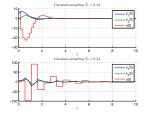
0000000

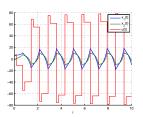
Challenges in sampled-data control

Aperiodic sampling may cause instability

$$\dot{x}(t) = A_0 x(t) + B_0 u(t), \qquad u(t) = K x(t_k)$$

$$A_0 = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 1 \\ 0.6 \end{bmatrix}, \quad K = \begin{bmatrix} -1 & -6 \end{bmatrix}.$$





Periodic sampling $T_1 = 0.18$, $T_2 = 0.54$

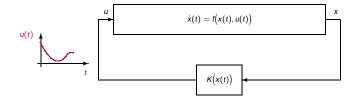
Aperiodic sampling $T_1 \rightarrow T_2 \rightarrow T_1 \cdots$

◆□▶◆□▶◆■▶◆■▶ ● めので

Problem under study

Continuous-time controller

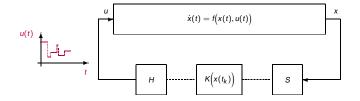
Introduction 0000000



$$u(t)=K\!\!\left(x(t)\right)$$

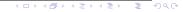
Problem under study

Digital implementation under asynchronous sampling (emulation approach)



$$u(t) = K(x(t_k)), \quad \forall t \in [t_k, t_{k+1}), \qquad 0 < \epsilon \le t_{k+1} - t_k \le \underbrace{h_{max}}_{MASP}, \quad \forall k \in \mathbb{N}.$$

Find stability criteria for nonlinear sampled-data control systems, which provide a computable estimate of the Maximum Allowable Sampling Period (MASP).



Existing results

The linear time-invariant case: Realistic model?

- Input delay approach (Fridman et al 2004), (Fridman 2010), (Michiels 2005)
- Robust control based analysis (Mirkin 2007), (Fujioka 2009)
- Impulsive modelling (Naghshtabrizi 2008)
- Discrete-time approaches & convex embedding (Hetel, Daafouz et al 2007)
- Sum of squares (Seuret 2011)

The nonlinear case: Constructive?

- Input delay approach (Mazenc et al 2013)
- Hybrid system modelling (Nešić et al 2009), (Burlion et al 2006)
- Single/vector Lyapunov functions (Karafyllis et al 2007)
- L_D stability (Zaccarian et al 2003)

Existing results

The linear time-invariant case: Realistic model?

- Input delay approach (Fridman et al 2004), (Fridman 2010), (Michiels 2005)
- Robust control based analysis (Mirkin 2007), (Fujioka 2009)
- Impulsive modelling (Naghshtabrizi 2008)
- Discrete-time approaches & convex embedding (Hetel, Daafouz et al 2007)
- Sum of squares (Seuret 2011)

→ Bilinear case

The nonlinear case: Constructive?

- Input delay approach (Mazenc et al 2013)
- Hybrid system modelling (Nešić et al 2009), (Burlion et al 2006)
- Single/vector Lyapunov functions (Karafyllis et al 2007)
 - L_D stability (Zaccarian et al 2003)

Outline

Introduction

000000

- Introduction
- Stability of bilinear sampled-data systems hybrid systems approach
- 3 Stability of bilinear sampled-data systems dissipativity approach
- 4 Stability of input-affine nonlinear systems with sampled-data control
- Conclusions and perspectives

Outline

- Stability of bilinear sampled-data systems hybrid systems approach

Input-affine systems

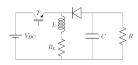
Bilinear systems

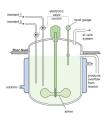
$$\dot{x}(t) = A_0 x(t) + \sum_{i=1}^{m} [u(t)]_i N_i x(t) + B_0 u(t)$$

- The simplest class of nonlinear systems.
- Offer a more accurate approximation of nonlinear systems than the classical linear ones.
- Allows to address the problem for a simple nonlinear system.
- Several applications: power electronics, mechanical systems, chemical processes.
- Continuous-time stabilization techniques: quadratic; division; sliding and linear state feedback.

Bilinear systems

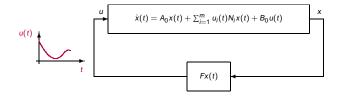
$$\dot{x}(t) = A_0 x(t) + \sum_{i=1}^{m} [u(t)]_i N_i x(t) + B_0 u(t)$$





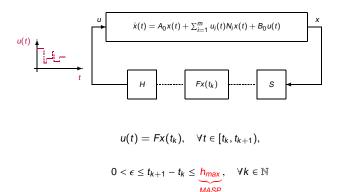
Problem formulation

Continuous-time control of bilinear systems with linear state feedback (local stabilization):



LMI based synthesis (Amato et al 2007), (Tarbouriech et al 2009).

Sampled-data implementation (emulation approach):



Problem: Constructive method to estimate the MASP, and the domain of attraction using LMI.

Hybrid system model for Networked Control Systems: (Walsh et al 2002) and (Nešić et al 2004) .

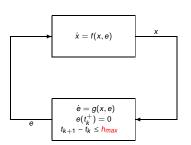
$$\underline{e(t) = x(t_k) - x(t)}$$

$$f(x,e) = \tilde{A}[x(t),e(t)]x(t) + Be(t),$$

$$g(x,e) = -\tilde{A}[x(t),e(t)]x(t) - Be(t),$$

$$\tilde{A}[x,e] := A[x(t_k)] = A_0 + B_0 F + \sum_{i=1}^{m} [Fx(t_k)]_i N_i,$$

$$B = B_0 F$$
.



Hybrid system model

$$au \in [0, h_{max})$$

$$\tau \in [\epsilon, \textit{h}_{\max}]$$

Hybrid system model:

$$\xi := [x^T, e^T, \tau]^T$$

$$F(\xi) := [f(x, e)^T, g(x, e)^T, 1]^T$$

$$G(\xi) := [x, 0, 0]^T$$

$$C := \{\xi : \tau \in [0, h_{max})\}$$

$$D := \{\xi : \tau \in [\epsilon, h_{max}]\}$$

$$\begin{cases} \dot{\xi} &= F(\xi), & \xi \in C, \\ \xi^+ &= G(\xi), & \xi \in D. \end{cases}$$

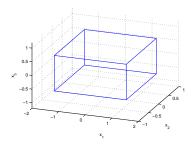
Proposed solutions

Local Analysis:

$$\mathcal{P} = conv\{x_1, x_2, ..., x_p\}$$

$$A[x(t_k)] \in \mathcal{P}_A = conv\{A_1, A_2, ..., A_p\}$$

$$A_i = A_0 + B_0 F + \sum_{j=1}^m [Fx_j]_j N_j, \quad \forall i \in \{1, 2, ..., p\}$$



Method 1

Result for the general nonlinear case (Nešić et al 2009):

Lyapunov function
$$U(\xi) = V(x) + \gamma \phi(\tau) W^2(e)$$

$$\Rightarrow \langle \nabla U(\xi), F(\xi) \rangle < -\varrho(|x|) - \varrho(W(e))$$

Question: How to find $V(\cdot)$, $W(\cdot)$, $H(\cdot,\cdot)$, $\varrho(\cdot)$, γ and L? It is stated in (Nešić et al 2009) that:

"We note that finding these functions may be hard for general nonlinear systems".

Input-affine systems

Method 1

Result for the general nonlinear case (Nešić et al 2009):

Lyapunov function
$$U(\xi) = V(x) + \gamma \phi(\tau) W^2(e)$$

$$\Rightarrow \langle \nabla U(\xi), F(\xi) \rangle < -\varrho(|x|) - \varrho(W(e))$$

Question: How to find $V(\cdot), W(\cdot), H(\cdot, \cdot), \rho(\cdot), \gamma$ and L? It is stated in (Nešić et al 2009) that:

"We note that finding these functions may be hard for general nonlinear systems".

Method 1

Theorem (CDC'12)

Assume that the MASP is strictly bounded $h_{max} < \mathcal{T}(L, \gamma)$:

$$\mathcal{T}(L,\gamma) := \left\{ \begin{array}{ll} \arctan(r)/(Lr) & \gamma > L \\ 1/L & \gamma = L \\ \arctan(r)/(Lr) & \gamma < L \end{array} \right. \qquad r = \sqrt{\left|\frac{\gamma^2}{L^2} - 1\right|}$$

where L is given by

$$L = \frac{1}{2} \max\{-\lambda_{min}(B^T + B), 0\}$$

and γ is the solution to the the optimization problem $\gamma = \min \gamma'$ under the constraints: $\exists P \in \mathbb{R}^n, P > 0$, and $\alpha > 0$ such that

$$M_{ij} = \begin{bmatrix} A_i^T P + PA_i + \frac{1}{2} (A_i^T A_j + A_j^T A_i) + \alpha I & PB \\ * & (\alpha - \gamma'^2)I \end{bmatrix} < 0, \qquad \forall i, j \in \{1, 2, ..., p\}.$$

Then the bilinear sampled-data system is locally uniformly asymptotically stable.

Method 1: Conservatism due to upper estimations of the derivative of a Lyapunov function.

Consider studying directly the Lyapunov function:

$$U'(\xi) = x^T P x + \exp(\frac{-\tau}{h_{\text{max}}}) e^T Q e$$

$$\begin{bmatrix} A_i^T P + P A_i + X & PB - A_i^T Q \\ * & -B^T Q - QB - \frac{1}{h_{max}} Q + Y \end{bmatrix} < 0, \qquad \forall i \in \{1,2,...,p\}.$$

$$\begin{bmatrix} A_i^T P + P A_i + X & PB - A_i^T Q \exp(-1) \\ * & [-B^T Q - QB - \frac{1}{12} Q] \exp(-1) + Y \end{bmatrix} < 0, \quad \forall i \in \{1, 2, ..., p\}.$$

Method 2

Method 1: Conservatism due to upper estimations of the derivative of a Lyapunov function.

Consider studying directly the Lyapunov function:

$$U'(\xi) = x^T P x + \exp(\frac{-\tau}{h_{max}}) e^T Q e$$

Theorem (CDC'12)

Assume that there exist symmetric positive definite matrices $P, Q, X, Y \in \mathbb{R}^{n \times n}$, such that the following LMIs are satisfied

$$\begin{bmatrix} A_i^T P + PA_i + X & PB - A_i^T Q \\ * & -B^T Q - QB - \frac{1}{h_{max}} Q + Y \end{bmatrix} < 0, \qquad \forall i \in \{1, 2, ..., p\}.$$

$$\begin{bmatrix} A_i^T P + P A_i + X & PB - A_i^T Q \exp(-1) \\ * & [-B^T Q - QB - \frac{1}{h_{more}}Q] \exp(-1) + Y \end{bmatrix} < 0, \qquad \forall i \in \{1, 2, ..., p\}.$$

Then the bilinear sampled-data system is locally uniformly asymptotically stable.

Numerical example

Consider the example from (Amato et al 2007) and (Tarbouriech et al 2009):

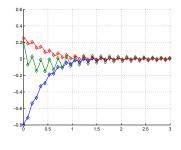
$$A_0 = \begin{bmatrix} -0.5 & 1.5 & 4 \\ 4.3 & 6.0 & 5.0 \\ 3.2 & 6.8 & 7.2 \end{bmatrix}; \quad B_0 = \begin{bmatrix} -0.7 & -1.3 \\ 0 & -4.3 \\ 0.8 & -1.5 \end{bmatrix}$$

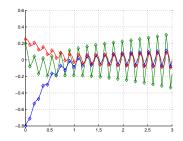
$$N_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; \quad N_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$F = \begin{bmatrix} 0.0016 & 0.0035 & 0.0034 \\ 2.2404 & 3.2676 & 5.9199 \end{bmatrix}$$

$$\mathcal{P} = [-1.35, +1.35] \times [-0.5, +0.5] \times [-0.5, +0.5]$$

	Method 1 (CDC'12)	Method 2 (CDC'12)
h _{max}	5 × 10 ⁻³	13 × 10 ⁻³





$$t_{k+1} - t_k = 88 \times 10^{-3}$$

$$t_{k+1} - t_k = 90 \times 10^{-3}$$

Summary

- Stability of bilinear sampled-data systems was addressed using a hybrid systems approach.
- Method 1: a constructive method to apply results from (Nešić et al 2009) for the bilinear case.
 - **Method 2**: a direct search of a Lyapunov function for the hybrid system.
- Both methods are constructive via I MIs.
- Still room for improvements.

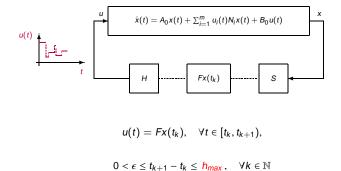
Outline

Introduction

- Introduction
- Stability of bilinear sampled-data systems hybrid systems approach
- 3 Stability of bilinear sampled-data systems dissipativity approach
- Stability of input-affine nonlinear systems with sampled-data control
- 6 Conclusions and perspectives

Problem formulation

Sampled-data implementation (emulation approach):



MASP

Dissipativity-based representation

Equivalent model

Closed-loop system

$$\dot{x}(t) = \left[A_0 + \sum_{i=1}^{m} (Fx(t_k))_i N_i\right] x(t) + B_0 Fx(t_k)$$

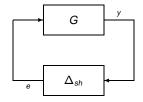
$$\dot{x}(t) = \left[\underbrace{A_0 + B_0 F + \sum_{i=1}^{m} (Fx(t_k))_i N_i}_{\tilde{A}[x,e] := A[x(t_k)]}\right] x(t) + \underbrace{B_0 F}_{B} \underbrace{(x(t_k) - x(t))}_{e(t)}$$

The system can be represented by the interconnection of:

$$G := \begin{cases} \dot{x}(t) = & \tilde{A}[x, e]x(t) + Be(t) \\ y(t) = & \dot{x}(t) \end{cases}$$

with the operator $\Delta_{sh}: y \rightarrow e$ defined by:

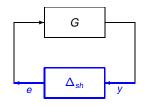
$$e(t) = -\int_{t_k}^t y(\tau)d\tau := (\Delta_{sh}y)(t), \quad \forall t \in [t_k, t_{k+1})$$



$$G := \begin{cases} \dot{x}(t) = & \tilde{A}[x, e]x(t) + Be(t) \\ y(t) = & \dot{x}(t) \end{cases}$$

$$(\Delta_{sh}y)(t) := -\int_{t_h}^t y(\tau)d\tau.$$

Properties of the operator



L2-induced norm (Mirkin 2007):

$$\frac{\|e\|}{\|y\|} \leq \delta_0 := \frac{2}{\pi} h_{max} \quad \text{i.e.} \int_0^\infty e^T(\tau) e(\tau) d\tau \leq \delta_0^2 \int_0^\infty y^T(\tau) y(\tau) d\tau.$$

Passivity (Fujioka 2009):

$$\langle \Delta_{sh} y, y \rangle = \int_0^\infty y^T(\tau) (\Delta_{sh} y)(\tau) d\tau \leq 0.$$

- Properties of Δ_{sh} are used for the case of LTI sampled-data systems using IQC.
- Robust stability analysis via frequency based conditions.
- Conditions are constructive (LMIs) thanks to KYP lemma.
- Among the less conservative stability criteria.

Can not be applied to bilinear systems

Objective: generalization to the bilinear case using dissipativity approach.

Dissipativity

Introduction

- An abstract extension of the notion of energy.
- Generalization of Lyapunov functions technique, for input-output systems.
- Encompass several properties of dynamical systems such as passivity and L2-gain.

Dissipativity approach

$$e \longrightarrow \begin{cases} \dot{x} = f(x) + g(x)e \\ y = h(x) + j(x)e \end{cases} \qquad y$$

$$\dot{V}(x(t)) \leq S(y(t), e(t))$$

V(x) is a storage function S(y, e) is a supply rate.

Properties of the operator

Boundedness property

Introduction

For all
$$y \in L_2[t_k, t_{k+1})$$
 and $0 < X^* = X \in \mathbb{R}^{n \times n}$:

Dissipativity approach

$$\int_{t_k}^t (\Delta_{sh} y)^* X(\Delta_{sh} y) d\tau - \delta_0^2 \int_{t_k}^t y^* X y d\tau \le 0, \quad \forall t \in [t_k, t_{k+1})$$

Passivity property

For all
$$y \in L_2[t_k, t_{k+1})$$
 and $0 \le Y^* = Y \in \mathbb{R}^{n \times n}$:

$$\int_{t_k}^t (\Delta_{sh} y)^* Yy \, d\tau + \int_{t_k}^t y^* Y(\Delta_{sh} y) \, d\tau \leq 0, \quad \forall t \in [t_k, t_{k+1})$$

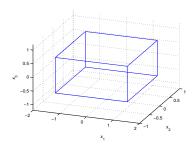
$$\Rightarrow \int_{t_{k}}^{t} \underbrace{\begin{bmatrix} y \\ e \end{bmatrix}^{T} \begin{bmatrix} -\delta_{0}^{2}X & Y \\ Y & X \end{bmatrix} \begin{bmatrix} y \\ e \end{bmatrix}}_{\text{Supply rate, } S(y,e)} d\tau \leq 0, \quad \forall t \in [t_{k}, t_{k+1})$$

Local Analysis:

$$\mathcal{P} = conv\{x_1, x_2, ..., x_p\}$$

$$A[x(t_k)] \in \mathcal{P}_A = conv\{A_1, A_2, ..., A_p\}$$

$$A_i = A_0 + B_0 F + \sum_{j=1}^m [Fx_j]_j N_j, \quad \forall i \in \{1, 2, ..., p\}$$



Theorem (Automatica'14)

If there exist symmetric positive definite matrices $X, Y, P \in \mathbb{R}^{n \times n}$ and P_2 , $P_3 \in \mathbb{R}^{n \times n}$, such that the following LMIs are satisfied

$$\begin{bmatrix} A_{i}^{T}P_{2} + P_{2}^{T}A_{i} & P - P_{2}^{T} + A_{i}^{T}P_{3} & P_{2}^{T}B \\ * & -P_{3} - P_{3}^{T} + \left(\frac{2}{\pi}h_{max}\right)^{2}X & P_{3}^{T}B - Y \\ * & * & -X \end{bmatrix} < 0$$

$$\forall i \in \{1, 2, ..., p\},$$

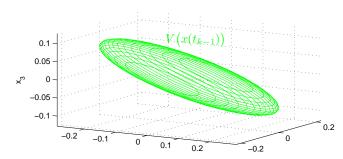
then the sampled-data system is locally asymptotically stable.

Main idea:

Introduction

dissipativity properties \Rightarrow contraction of sub-level sets defined by $V(x) = x^T P x$:

$$\dot{V} < S(y, e) \Rightarrow$$

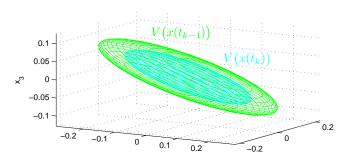


Main idea:

Introduction

dissipativity properties \Rightarrow contraction of sub-level sets defined by $V(x) = x^T P x$:

$$\dot{V} < S(y, e) \implies$$

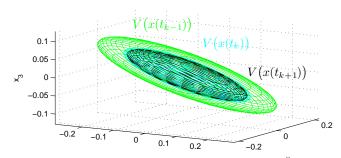


Main idea:

Introduction

dissipativity properties \Rightarrow contraction of sub-level sets defined by $V(x) = x^T P x$:

$$\dot{V} < S(y,e) \implies$$



Introduction

Consider the example from (Amato et al 2007) and (Tarbouriech et al 2009):

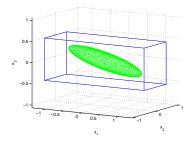
$$A_0 = \begin{bmatrix} -0.5 & 1.5 & 4 \\ 4.3 & 6.0 & 5.0 \\ 3.2 & 6.8 & 7.2 \end{bmatrix}; \quad B_0 = \begin{bmatrix} -0.7 & -1.3 \\ 0 & -4.3 \\ 0.8 & -1.5 \end{bmatrix}$$

$$N_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; \quad N_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$F = \begin{bmatrix} 0.0016 & 0.0035 & 0.0034 \\ 2.2404 & 3.2676 & 5.9199 \end{bmatrix}$$

$$\mathcal{P} = [-1.35, +1.35] \times [-0.5, +0.5] \times [-0.5, +0.5]$$

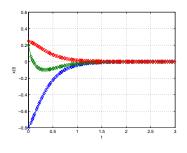
Region of attraction:

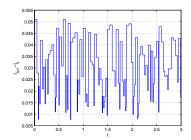


	Method 1 (CDC'12)	Method 2 (CDC'12)	Theorem (ADHS'12)	Theorem (Automatica'14)
h _{max}	5 × 10 ⁻³	13 × 10 ⁻³	43 × 10 ⁻³	51 ×10 ⁻³

Simulation:

State evolution for the sampled-data bilinear system with $h_{max} = 51 \times 10^{-3}$:





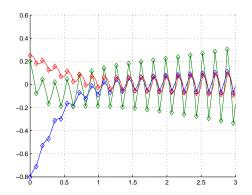
State evolution

Time variations of the sampling intervals

Simulation:

Introduction

State evolution for the sampled-data bilinear system with $t_{k+1} - t_k = 90 \times 10^{-3}$:



Summary

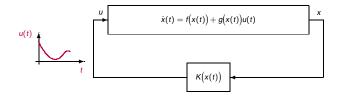
- Stability of bilinear sampled-data systems was addressed using a robust control theory approach.
- The method is based on the analysis of contractive invariant sets, and it is inspired
 by the dissipativity theory.
- The proposed stability conditions are constructive via LMIs.
- How to generalize to a more general class of nonlinear systems?

Outline

- Introduction
- Stability of bilinear sampled-data systems hybrid systems approach
- Stability of bilinear sampled-data systems dissipativity approach
- 4 Stability of input-affine nonlinear systems with sampled-data control
- 6 Conclusions and perspectives

Problem formulation

Continuous-time controller



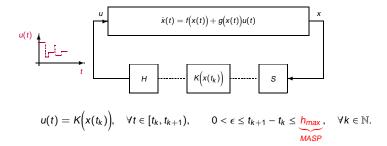
$$u(t) = K(x(t))$$

The (continuous-time) controller K (of class C^1) stabilizes asymptotically the origin of the system.

Problem formulation

Introduction

Digital implementation under asynchronous sampling (emulation approach)



Problem: Extend the dissipativity-based stability criteria for this more general class of nonlinear systems.

Dissipativity-based representation

Equivalent model

Closed-loop system

$$\dot{x}(t) = f(x(t)) + g(x(t))K(x(t_k))$$

$$\dot{x}(t) = \underbrace{f(x(t)) + g(x(t))K(x(t))}_{f_n(x(t))} + \underbrace{g(x(t))}_{g_n(x(t))} \underbrace{\left(K(x(t_k)) - K(x(t))\right)}_{e(t)}$$

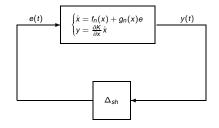
The system can be represented by the interconnection of:

$$\begin{cases} \dot{x}(t) = f_n(x(t)) + g_n(x(t))e(t) \\ y(t) = \frac{\partial K}{\partial x}\dot{x}(t) \end{cases}$$

with the operator $\Delta_{sh}: y \rightarrow e$ defined by:

$$e(t) = (\Delta_{sh} y)(t) = -\int_{t_k}^t y(\tau) d\tau$$

Dissipativity-based representation



$$\begin{cases} \dot{x}(t) = f_n(x(t)) + g_n(x(t))e(t) \\ y(t) = \dot{x}(t) \end{cases}$$

$$(\Delta_{\mathsf{sh}} y)(t) := -\int_{t_k}^t y(au) d au.$$

Stability analysis

Introduction

Theorem (ECC'13)

Consider a neighbourhood $\mathcal{D} \subset \mathbb{R}^n$ of the origin x=0 and differentiable positive definite function $V: \mathcal{D} \to \mathbb{R}^+$ psuch that there exist class \mathcal{K} function β_1 et β_2 with:

$$\beta_1(|x|) \leq V(x) \leq \beta_2(|x|), \quad \forall x \in \mathcal{D}.$$

If for $\alpha > 0$ and for any $x(t) \in \mathcal{D}$, the function V satisfies:

$$\dot{V}(x(t)) + \alpha V(x(t)) \leq \mathbf{S}(y(t), \mathbf{e}(t))
\dot{V}(x(t)) + \alpha V(x(t)) \leq \mathbf{S}(y(t), \mathbf{e}(t)) \mathbf{e} \mathbf{x} \mathbf{p}(-\alpha \mathbf{h}_{\text{max}})$$

Then the equilibrium x=0 of the sampled-data system is locally uniformly asymptotically stable. The maximal sub-level set of V that is contained in $\mathcal D$:

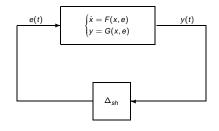
$$c^* = \max_{\mathcal{L}_c \subset \mathcal{D}} c, \qquad \mathcal{L}_c := \{x \in \mathbb{R}^n : V(x) \leq c\}.$$

is an estimate of the domain of attraction.

Conclusions and perspectives

Polynomial systems

Specialization to the case of polynomial systems



$$F(x,e)$$
 := $\underbrace{f(x) + g(x)K(x)}_{f_n(x)} + \underbrace{g(x)}_{g_n(x)} e$

$$G(x,e) := \frac{\partial K}{\partial x} F(x,e)$$

f(x), g(x) and K(x) polynomials \Rightarrow F(x,e) and G(x,e) are polynomials

Introduction

Specialization for the case of polynomial systems

$$\dot{V}(x(t)) + \alpha V(x(t)) \leq \mathbf{S}(y(t), \mathbf{e}(t))
\dot{V}(x(t)) + \alpha V(x(t)) \leq \mathbf{S}(y(t), \mathbf{e}(t)) \mathbf{e} \mathbf{x} \mathbf{p}(-\alpha \mathbf{h}_{max})$$

$$0 \leq -\frac{\partial V}{\partial x}F(x,e) - \alpha V(x) + \left[-\delta_0^2 G^T(x,e)XG(x,e) + 2G^T(x,e)Ye + e^TXe\right]$$

$$0 \leq -\frac{\partial V}{\partial x}F(x,e) - \alpha V(x) + \left[-\delta_0^2 G^T(x,e)XG(x,e) + 2G^T(x,e)Ye + e^TXe\right]exp(-\alpha h_{max})$$

The last inequalities are of the form $p(\xi) \ge 0$, where $p(\xi) \in \mathbb{R}[\xi]$, and $\xi = (x, e)$.

Verification of $p(\xi) \ge 0$ is a difficult problem! \rightarrow simplification using SOS

A multivariate polynomial $p(\xi) \in \mathbb{R}[\xi]$ is said to be a sum of squares (SOS) (Papachristodoulou 2005) if there exist $p_i(\xi) \in \mathbb{R}[\xi]$, $i \in \{1, ..., M\}$, such that $p(\xi) = \sum_{i=1}^M p_i^2(\xi)$.

Corollary (ECC'13)

Introduction

In the case where f(x), g(x) and K(x) are polynomials, let

$$\mathcal{D} = \{x \in \mathbb{R}^n : \mu_I(x) \ge 0, I = 1, 2, ..., s\}$$

be a neighbourhood of x = 0. Suppose that there exist a polynomial function $V(x) \in \mathbb{R}[x]$ and sums of squares $\sigma_l(\xi)$ and $\varsigma_l(\xi)$, with $l \in \{1, ..., s\}$ and $\xi = (x, w)$, such that the following polynomials are SOS:

- $V(x) \varphi(x)$,
- $\bullet \sum_{i=1}^{s} \sigma_{i}(\xi)\mu_{i}(x) \frac{\partial V}{\partial x}F(x,e) \alpha V(x) + \left[-\frac{\delta_{0}^{2}}{\delta_{0}^{2}}G^{T}(x,e)XG(x,e) + 2G^{T}(x,e)Ye + e^{T}Xe\right],$
- $\bullet \sum_{i=0}^{\infty} \varsigma_i(\xi)\mu_i(x) \frac{\partial V}{\partial x}F(x,e) \alpha V(x) + \left[-\frac{\delta_0^2}{\sigma^2}G^T(x,e)XG(x,e) + 2G^T(x,e)Ye + e^TXe\right]e^{-\alpha h_{max}}.$

Then x = 0 is locally uniformly asymptotically stable. Moreover, $\mathcal{L}_{\mathcal{C}^*}$ is an estimate of the domain of attraction.

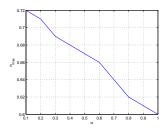
Introduction

Consider the example from (Nešić et al 2009)

$$\dot{x} = dx^2 - x^3 + u$$
, $u = K(x) = -2x$, with $|d| \le 1$.

	ECC'13	(Nešić et al 2009)	(Karafyllis et al 2007)
h _{max}	0.72	0.368	0.1428

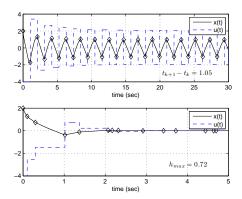
Trade-off between the decay rate α and the MASP:



Simulation:

Introduction

State evolution for the sampled-data system:



Summary

- Address a quite general class of systems thanks to exponential dissipativity.
- Sufficient conditions for the stability of nonlinear sampled-data systems, which are affine in the control.
- The results are numerically tractable for the case of polynomial systems, with the use of SOS.

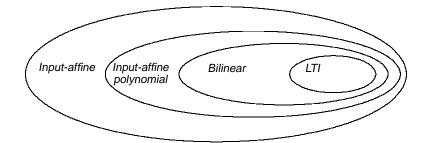
Outline

- Introduction
- Stability of bilinear sampled-data systems hybrid systems approach
- Stability of bilinear sampled-data systems dissipativity approach
- Stability of input-affine nonlinear systems with sampled-data control
- Conclusions and perspectives

- A contributions to the stability analysis of nonlinear systems under aperiodic sampling.
- A particular attention has been given to the case of bilinear systems: Hybrid system modeling approach Dissipativity approach
- Extend the dissipativity-based results developed for bilinear systems to a more general class of nonlinear systems.
- The methods provide quantitative estimates of the MASP.

Hybrid systems approach occessions occessions and perspectives occessions and perspectives occessions and perspectives occessions occessions and perspectives occessions occessions occessions occurrence occurr

Conclusions



Perspectives

- Include other network-imposed imperfections such as: time-varying delays, protocols
 .. etc.
- Improve the numerical solvability of the proposed conditions in order to decrease the conservatism.
- Controlled sampling: event-based control, self-triggered control and state-dependent sampling (Fiter et al 2012), for nonlinear systems.

Personal publications

Journals:

- H. Omran, L. Hetel, J.-P. Richard, and F. Lamnabhi-Lagarrigue. "Stability analysis of bilinear systems under aperiodic sampled-data control". Automatica. 2014.
- H. Omran, L. Hetel, J. P. Richard, and F. Lamnabhi-Lagarrigue. "Stabilité des systèmes non linéaires sous échantillonnage apériodique". Journal Européen des Systèmes Automatisés. Accepted. Selected work from 5èmes Journées Doctorales / Journées Nationales MACS. 2013.

Conferences:

- H. Omran, L. Hetel, and J.-P. Richard. "Local stability of bilinear systems with asynchronous sampling". In The 4th IFAC Conference on Analysis and Design of Hybrid Systems(ADHS), pages 19-24, 2012.
- H. Omran, L. Hetel, J.-P. Richard, and F. Lamnabhi-Lagarrigue. "Stability of bilinear sampled-data systems with an emulation of static state feedback". In IEEE 51st Annual Conference on Decision and Control (CDC), pages 7541-7546, 2012.
- H. Omran, L. Hetel, J.-P. Richard, and F. Lamnabhi-Lagarrigue. "On the stability of input-affine nonlinear systems with sampled-data control". In European Control Conference (ECC), pages 2585-2590, 2013.

Thank you for your attention

Input-affine systems

